Indexing Local Configurations of Features for Scalable Content-Based Video Copy Detection

Sebastien Poullot, Xiaomeng Wu, and Shin'ichi Satoh National Institute of Informatics (NII) Michel Crucianu, Conservatoire National des Arts et Metiers (CNAM)

Goals and choices

- Priority: speed → scalability
- Quality, MinDCR = 0.5
- Choices
 - Frame selection → keyframes (3000 per hour)
 - Depending on global activity changes
 - Flipped keyframes in ref database
 - Descriptors not invariant

Goals and choices

- Priority: speed → scalability
- Quality, MinDCR = 0.5
- Choices
 - Pol → Harris corner
 - Fast computation, but noise and blur sensitive
 - Local descriptors → spatio-temporal local jets
 - Fast computation, but not scale invariant, and frame drop sensitive
 - Global description → scalability
 - Smaller database → search faster
 - No vote process at frame level
 - Indexing → scalability

Goals

- A video description at frame level using local features:
 Glocal (alternative to BoF)
 - An interesting trade off scalability / accuracy
- An indexing scheme based on associations of local features
 - Reduce bad collisions
- A simple shape descriptor
 - Filter out remaining bad collisions

→ scalability and accuracy

Method

Processings

Local features

- Points of Interest: Harris corner (could be DoG, Hessian, etc)
 - Local Descriptors at these positions: SpatioTemporal Local Jets (could be dipoles, SIFT, GLOH, etc)

→ a set of descriptors
associated to
a set of positions
(d1,p1), (d2,p2),..., (dn,pn)

Quantization of local features

- Quantization of the descriptors (di,pi,qi)
- → use a parameterized Zgrid (based on distributions)

1	° 2	9	° 10
3	4	11	12
0		0	
5	6	13	14
7	8	15	16

010000000000000

_ .

D=4

0100100001001000

D=4

- Keyframe Glocal description = sum of quantizations of features
- Small descriptor and vocabulary (D=10, 1024 bits / 1024 words)
- No clustering needed

Combining local features

Construction of N-tuples using K-NN in image plane

P1 - P1NN1 - P2NN1

P1 - P3NN1 - P4NN1

P1 - P5NN1 - P6NN1

P2 - P1NN2 - P2NN2

P2 - P3NN2 - P4NN2

P2 - P5NN2 - P6NN2

Combining local features

- Pol: up to 150 / keyframe
- Up to 5 triplets / Pol (1NN&2NN,..., 9NN&10NN)
- Up to 750 associations per keyframe
- Some redundancy appears → average = 650 associations
 - Glocal descriptors inserted in 650 buckets
 - Bucket choice depends on Pol
 - Buckets defined by quantization of descriptors
 - Bucket definition depends on local descriptors

Bucket definition

Number of possible buckets $N_B = \frac{\left(2^d\right)^3}{L!}$ where L = sentence length

Trecvid: d=10, $L=3 \rightarrow N_B = 178.10e6$

Indexing method

Weak shape code

Ratio between longer and smaller side (>=1)

 Allow to distinguish different local configurations: more or less flat

Intra bucket similarity search

- ▶Bucket = list of Glocal Descriptor Gi.(q, sc, tc)
- In each bucket, only between refs and queries, compute:
- correspondence between shape codes
- (filtering)
- similarity


```
For each couple of Glocal descriptor (Gx, Gy) if (Gx.sc \sim Gy.sc) then if (Sim(Gx.q, Gy.q) > Th)

Keep (Gx.(id,tc), Gy.(id,tc))
```

Matching Video Sequence

Between two videos find temporal consistency of keyframes

- Number of couples of matching keyframe >= T |
- Blank between two successive pairs of matching keyframes <=
 T_g
- Offset between two successive pairs of keyframes <= T_j

Computation costs

- Extraction of keyframes: 1/25 of real time (rl)
- Computation of descriptors: 1/50 rl
- Construction of reference database: 1/200 rl (offline)
- Query: 1/150 rl
- → limits: keyframes extraction process and descriptor computation

Results

Results - Balanced

Results - Balanced

Computer: laptop - core2Duo@2.6Ghz - 4Gb RAM - HD 5400RPM

Results - No False Alarm

Results - No False Alarm

Computer: laptop - core2Duo@2.6Ghz - 4Gb RAM - HD 5400RPM

Conclusion

- Glocal description is relevant
- Local associations of features for indexing gives nice accuracy and good scalability to CDVCB
- Weak shape embedding dramatically scales up CDVCB with small loss of recall and high gain of precision (2/3 of similarities avoided, FA/10)
- Method has proven its possibility
 - TRECVID09 CBVCD task
 - 3000h database similarity self join (global 6 hours)

Future works

- Further association of Pol and Descriptors to test (Hessian, SURF, Dipoles, etc)
- Other weak geometric concept
- Try the method to other fields
 - Objects (BoF) near duplicates
 - Pictures
- Extraction of knowledge on large databases

Thank you for attention