



# High-Level Feature Extraction Using SIFT GMMs, Audio Models, and MFoM

Nakamasa Inoue, Shanshan Hao, Tatsuhiko Saito, Koichi Shinoda, Department of Computer Science, Tokyo Institute of Technology Ilseo Kim,
Chin-Hui Lee,
Department of Computer Science,
Georgia Institute of Technology





#### **Outline**

- 1. SIFT Gaussian mixture models (GMMs) and audio models
- 2. Text representation of images

3. Multi-Class Maximal Figure-of-Merit (MC MFoM)

classifier to combine 1 & 2

Best result: Mean InfAP = 0.168







#### 1. SIFT GMMs and Audio Models





#### **SIFT Feature Extraction**

- Extract SIFT features from all the image frames with Harris-Affine / Hessian-Affine regions.
- Apply PCA to reduce dimension [128dim → 32dim].







#### **SIFT Gaussian Mixture Models**

 Model SIFT features by a Gaussian Mixture Model (GMM).

Robustness against quantization errors that occur in hardassignment clustering in the BoW approach is expected.

Probability density function (pdf)

of SIFT GMM:

$$p(x|\theta) = \sum_{k=1}^{K} w_k \mathcal{N}(x|\mu_k, \Sigma_k)$$

K: num. of mixtures (512)

 $w_k$ : mixing coefficient

 $\mathcal{N}(x|\mu_k,\Sigma_k)$  : pdf of Gaussian

 $\mu_k$  : mean vector

 $\sum_{k}$ : variance matrix







#### SIFT Gaussian Mixture Models

Maximum A Posteriori (MAP) adaptation







#### Classification

Distance between SIFT GMMs:

Weighted sum of Mahalanobis distance

$$d(s,t) = \sum_{k=1}^{K} w_k^{(g)} (\mu_k^{(s)} - \mu_k^{(t)})^T (\Sigma_k^{(g)})^{-1} (\mu_k^{(s)} - \mu_k^{(t)})$$

 $\theta^{(g)}$ : UBM,  $\theta^{(s)}, \theta^{(t)}$ : s-th and t-th shots

SVM classification with probability outputs Kernel function :  $K(s,t) = \exp(-\gamma d(s,t))$ 

Finally, we obtain posteriori probability  $p(h = +1|X_s)$ 





#### **Audio Models**

- Features: Mel-Frequency Cepstral Coefficients (MFCCs)
- Models: Hidden Markov Models (HMMs)



filter bank

#### Feature extraction process

- 1. Frame extraction
- 2. Windowing [Hamming window]
- 3. Fast Fourier transform (FFT)
- 4. Mel scale filter bank
- 5. Logarithmic transform
- 6. Discrete cosine transform (DCT)







#### **Hidden Markov Models**

- Ergodic HMMs (2 states, GMMs with 512 mixtures)
- Log of likelihood ratio









#### **Hidden Markov Models**

- Ergodic HMMs (2 states, GMMs with 512 mixtures)
- Log of likelihood ratio







#### **C**ombination of SIFT GMMs and Audio Models

- Outputs from
  - audio models  $L_{\rm au}$
  - SIFT GMMs with Harris-Affine regions  $p_{har}(h = +1|X_s)$
  - SIFT GMMs with Hessian-Affine regions  $p_{\text{hes}}(h=+1|X_s)$
- Log of likelihood ratio and posteriori probability
- Combined log of likelihood ratio

$$L = w_{\text{au}}L_{\text{au}} + w_{\text{har}}H(p_{\text{har}}(h = +1|X_s)) + w_{\text{hes}}H(p_{\text{hes}}(h = +1|X_s))$$

where 
$$H(p) = \log \frac{p}{1-p}$$

Optimize weight parameters by 2-fold cross validation





#### **C**ombination of SIFT GMMs and Audio Models

- Outputs from
  - audio models  $L_{\rm au}$
  - SIFT GMMs with Harris-Affine regions  $p_{har}(h = +1|X_s)$
  - SIFT GMMs with Hessian-Affine regions  $p_{\text{hes}}(h=+1|X_s)$
- Log of likelihood ratio and posteriori probability

$$\begin{split} L_{\text{har}} &= \log \frac{p_{\text{har}}(X_s|h = +1)}{p_{\text{har}}(X_s|h = -1)} \\ &= \log \frac{p_{\text{har}}(h = +1|X_s)}{p_{\text{har}}(h = -1|X_s)} \cdot \frac{p_{\text{har}}(h = -1)}{p_{\text{har}}(h = +1)} \\ &= H(p_{\text{har}}(h = +1|X_s)) + H(p_{\text{har}}(h = +1))^{-1} \\ \text{where } H(p) &= \log \frac{p}{1-p} \end{split}$$





#### **C**ombination of SIFT GMMs and Audio Models

- Outputs from
  - audio models  $L_{\rm au}$
  - SIFT GMMs with Harris-Affine regions  $p_{har}(h = +1|X_s)$
  - SIFT GMMs with Hessian-Affine regions  $p_{\text{hes}}(h=+1|X_s)$
- Log of likelihood ratio and posteriori probability
- Combined log of likelihood ratio

$$L = w_{\text{au}}L_{\text{au}} + w_{\text{har}}H(p_{\text{har}}(h = +1|X_s)) + w_{\text{hes}}H(p_{\text{hes}}(h = +1|X_s))$$

where 
$$H(p) = \log \frac{p}{1-p}$$

Optimize weight parameters by 2-fold cross validation





# 2. Text Representation of Images and MC MFoM Classifier





# **Text Representation of Images**







#### MC MFoM Classifier

- Multi-Class (MC) learning approach
   MC learning approach can learn a classifier even if there are not enough positive samples like the case of the HLF extraction task in TRECVID2009.
- Maximal Figure-of-Merit (MFoM) Classifier
  MFoM classifier can directly optimize <u>any objective performance</u> <u>metric</u> such as m-F1 and MAP by approximating discrete functions to continuous functions, and the GPD algorithm.





# **MC MFoM Learning Scheme**

- The parameter set,  $\Lambda=\{\Lambda_j, 1\leq j\leq N\}$  is estimated by directly optimizing an objective performance metric with a linear classifier,  $g_j(X;\Lambda_j)=W_j\cdot X+b_j$ .
- Given N concepts,  $C=\{C_j, 1\leq j\leq N\}$  and D-dimensional image representation,  $X\in R^D$ , the decision rule is

$$\begin{cases} Accept & X \in C_j, \text{if } g_j(X; \Lambda_j) - g_j^-(X; \Lambda^-) > 0 \\ Reject & X \notin C_j, Otherwise \end{cases}$$
  $1 \le j \le N$ 

where  $g_j^-(X;\Lambda^-)$  indicates a geometric average for scores of all competing concepts to the concept j.





# **MC MFoM Learning Scheme**

- Misclassification function,  $d_j(X;\Lambda)=-g_j(X;\Lambda_j)+g_j^-(X;\Lambda^-)$  is defined where a correct decision is made when  $d_j(X;\Lambda)<0$ .
- Approximation of discrete functions to continuous functions by introducing a sigmoid function

$$l_{j}(X;\Lambda) = \frac{1}{1 + \exp\left(-\alpha(d_{j}(X;\Lambda) + \beta)\right)}$$

$$\begin{cases}
TP_{j} \approx \sum_{X \in T} (1 - l_{j}(X;\Lambda)) \cdot 1(X \in C_{j}) \\
FP_{j} \approx \sum_{X \in T} (1 - l_{j}(X;\Lambda)) \cdot 1(X \notin C_{j}) \\
FN_{j} \approx \sum_{X \in T} l_{j}(X;\Lambda) \cdot 1(X \in C_{j})
\end{cases}$$

 Now, most commonly used metrics could be represented with the above approximations, and directly optimized with GPD algorithm.





#### 3. MFoM Fusion





#### **Discriminant Fusion Scheme**

Model Based Transformation (MBT) fusion
 Given N concepts, N score functions are learned by an MC MFoM classifier. Taking the N score functions as the basis for the transformation, we can obtain a new N-dimensional feature.



A new MC-MFoM classifier can be trained using MxN-dimensional features.





# Reference experiment to MFoM fusion

#### Rank fusion

The rank numbers from different systems are combined to get a new rank number:

$$N(x) = \sum_{i} P_i R_i(x)$$

 $R_i(x)$ : the rank number of shot x in the ranked output of

classification system i

 $P_i$  : the weight assignment to system i

2-fold cross validation is used to determine the weight parameters





# 4. Experiment





#### Result

| Run name                 |                                      | MInfAP |
|--------------------------|--------------------------------------|--------|
| A_TITGT-Titech-1_4       | SIFT GMMs + Audio models (no fusion) | 0.168  |
| A_TITGT-Fusion-score-2_3 | MFoM (MBT fusion) 1                  | 0.152  |
| A_TITGT-Fusion-score-1_2 | MFoM (MBT fusion) 2                  | 0.149  |
| A_TITGT-Fusion-rank_1    | Rank fusion                          | 0.147  |
| A_TITGT-Gatech-Ftr_5     | Visual word + MFoM (no fusion)       | 0.108  |
| A_TITGT-Titech-1_6       | Local + Global features (no fusion)  | 0.023  |



- MeanInfAP of SIFT GMMs + Audio models was 0.168, which is ranked
   11th of all A-type runs and 4th among all participating teams.
- The MFoM fusion works better than the rank fusion.













Combination with audio is effective for the HLF extraction.

Good: Singing (0.229), People-dancing (0.319),

People-playing-a-musical-instruments (0.155),

Female-human-face-closeup (0.266).

SIFT GMMs represent HLFs with the background.

Good: Airplane\_flying (0.138), Boat\_Ship (0.250).





#### Conclusion

- Combination of SIFT GMMs and audio models is effective for the HLF extraction (Mean InfAP = 0.168).
  - SIFT GMMs work well for various HLFs.
  - Audio models can detect HLFs complementary.
- It is difficult to make a fusion of different systems.

#### **Future work**

- More improved collaboration work
- Using time/spatial region information