The IBM Semantic Concept
Detection Framework

Arnon Amir, Giri Iyengar, Ching-Yung Lin, Chitra Dorai,
Milind Naphade, Apostol Natsev, Chalapathy Neti,
Harriet Nock, Ishan Sachdev, John Smith,
Yi Wu, Belle Tseng, Dongqing Zhang
Outline

- Concept Detection as a Machine Learning Problem
- The IBM TREC 2003 Concept Detection Framework
 - Modeling in Low-level Features
 - Multi-classifier Decision fusion
 - Modeling in High-level (semantic) Features
- Putting it All Together: TREC 2003 Concept Detection
- Observations
Multimedia Analytics by Supervised Learning

User

Annotation

Training Video Repository

Test Videos

Feature Extraction

Feature Extraction

Training

Semantic Concept Models

Detection

MPEG-7 Annotations

Analysis
Multi-layered Concept Detection: Working in Increasingly (Semantically) Meaningful Feature Spaces

High-level Feature Space Models
- e.g. Multinet, DMF (SVM, NN), Propagation Rules

Low-level Feature Space Models
- e.g. SVM, GMM, HMM, TF-IDF

Detection using Models built in low-level Feature Spaces

High-level Feature Space Mapping

Detection and Manipulation in High-level Feature Spaces

- Improving Detection
- Building Complex Concepts
 (e.g. News Subject Monologue)

Videos

Low-level Feature Extraction
- e.g. Color, texture, Shape, MFCC, Motion

Detected Features
- e.g. Face, People, Cityscape etc.
The Evolving IBM Concept Detection System

<table>
<thead>
<tr>
<th>IBM TREC’01, 02</th>
<th>Post TREC’ 02 Experiments</th>
<th>IBM TREC’03</th>
</tr>
</thead>
<tbody>
<tr>
<td>Use of SVM, GMM and HMM Classifiers for modeling low-level features</td>
<td>Use of SVM, GMM and HMM Classifiers for modeling low-level and high-level features</td>
<td>Use of SVM, GMM and HMM Classifiers for low-level and high-level features</td>
</tr>
<tr>
<td>Ensemble and Discriminant Fusion (TREC02) of Multiple Models of Same Concept Improved performance over single models</td>
<td>Ensemble and Discriminant Fusion of Multiple Models of Same Concept Improved performance over single models</td>
<td>Ensemble and Discriminant Fusion of Multiple Models of Same Concept Improved performance over single models</td>
</tr>
<tr>
<td>Rule-based Preprocessing (e.g. Non-Studio Setting = (NOT(Studio_Indoor_Setting)) OR (Outdoors))</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Validity Weighted Similarity Improves Robustness</td>
<td>Validity Weighted Similarity Improves Robustness</td>
<td></td>
</tr>
<tr>
<td>Semantic feature based Models (Multinet, DMF) Improves Performance over Single-concept models</td>
<td>Semantic feature based Models (Multinet, DMF-SVMs, NN, Boosting), Ontology Improves Performance over Single-concept models</td>
<td>Post-Filtering Improves Precision</td>
</tr>
</tbody>
</table>
Video Concept Detection Pipeline

Annotation and Data Preparation

Feature Extraction
- Videos
- Annotation
- Region Extraction
- Feature Extraction
- CC
- CH
- CLG
- CT
- WT
- TAM
- EH
- MI
- MV
- AUD

Low-level Feature-based Models
- SD/A
- V1
- V2

Fusing Models of each concept across low-level feature-based techniques
- VW
- EF
- MLP
- EF2
- BOU
- BOF
- BOBO

High-level (semantic) Context based Methods
- MN
- DMF17
- MLP

Best Uni-model Ensemble Run
Best Multi-modal Ensemble Run
Best-of-the-Best Ensemble Run

Post-processing
Filtering

Annotation: training only
Region Extraction: training and testing
Corpus Issues

- Multi-layered Detection Approach needs multiple sets for cross validation
- Partitioning of Feature Development Set so that each level of processing has a training set and a test set partition that is unadulterated by the processing at the previous level.
- E.g. Low-level feature based concept models built using Training Set and performance optimized over Validation Set.
- Single-Concept, multi-model fusion is performed using Validation Set for training and Fusion Validation Set 1 for testing.
- Semantic-level fusion is performed by using Fusion Validation Set 1 as the training set and Fusion Validation Set 2 as the test set.
- Runs submitted to NIST are chosen finally on performance of all systems and algorithms on Fusion Validation Set 2.

Partitioning procedure

All videos aligned by their temporal order and

For each set of 10 videos

- First 6 -> Training Set,
- 7th -> Validation
- 8th -> Fusion Validation Set 1
- Last 2 -> Fusion Validation Set 2.
Video Concept Detection Pipeline: Features

Annotation and Data Preparation

- Annotation

Feature Extraction

- Feature Extraction
 - CC
 - CH
 - CLG
 - CT
 - WT
 - TAM
 - EH
 - MI
 - MV
 - AUD

Videos

- : training only
- : training and testing
Features extracted globally and regionally

Color:
- Color histograms (512 dim), Auto-Correlograms (166 dim)

Structure & Shape:
- Edge orientation histogram (64 dim), Dudani Moment Invariants (6 dim),

Texture
- Co-occurrence texture (96 dim), Coarseness (1 dim), Contrast (1 dim), Directionality (1 dim), Wavelet (12 dim)

Motion
- Motion vector histogram (6 dim)

Audio
- MFCC

Text
- ASR Transcripts

Regions
- Object (motion, Camera registration)
- Background (5 regions / shot)

References: Lin (ICME 2003)
Video Concept Detection Pipeline: Low-level Feature Modeling

- **Annotation and Data Preparation**
 - Annotation

- **Feature Extraction**
 - Region Extraction
 - Feature Extraction
 - Annotation

- **Low-level Feature-based Models**
 - 17 TREC Benchmark Concepts
 - 47 Other Concepts
 - Best Uni-model Ensemble Run

- **Videos**

- **Features**
 - CC
 - CH
 - CLG
 - CT
 - WT
 - TAM
 - EH
 - MI
 - MV
 - AUD
 - SD/A
 - V1
 - V2
 - BOU

- Training only
- Training and testing
Low-level Feature-based Concept Models
Statistical Learning for Concept Building: SVM

- SVM models used for 2 sets of visual features
 - Combined Color correlogram, edge histogram, cooccurrence features and moment invariants
 - Color histogram, motion, Tamura texture features
- For each concept
 - Built multiple models for each feature set by varying kernels and parameters.
 - Upto 27 models for each concept built for each feature type
- A total of 64 concepts from the TREC 2003 lexicon covered through SVM-based models
- Validation Set is used to then search for the best model parameters and feature set.
- Identical Approach as in IBM System for TREC 2002
- Fusion Validation Set II MAP: 0.22
Low-level Feature-based Concept Models:
Statistical Learning for Concept Building based on ASR Transcripts

TRAINING:
Manually examine examples to find frequently co-occurring relevant words

... some weather news overseas ... update on low pressure storm

WEATHER NEWS
QUERY WORD SET:
weather news low pressure storm cloudy mild windy ... (etc) ...

OKAPI SYSTEM FOR SEARCH TEXT
ASR TRANSCRIPTS

Fusion Validation II MAP = 0.19
References: Nock et al (SIGIR 2003)
Video Concept Detection Pipeline: Fusion I

Annotation and Data Preparation

Feature Extraction

Region Extraction

Feature Extraction

Low-level Feature-based Models

Fusing Models of each concept across low-level feature-based techniques

17 TREC Benchmark Concepts

V1

V2

SD/A

47 Other Concepts

V1

V2

EF

MLP

Best Uni-model Ensemble Run

Best Multi-modal Ensemble Run

Annotation

Videos

CC

CH

CLG

CT

WT

TAM

EH

MI

MV

AUD

EF2

BOU

BOF

: training only

: training and testing
Multi-Modality/ Multi-Concept Fusion Methods

Ensemble Fusion:

- Normalization: rank, Gaussian, linear.
- Combination: average, product, min, max
- Works well for uni-modal concepts with few training examples
- Computationally low-cost method of combining multiple classifiers.
- Fusion Validation Set II MAP: 0.254
- SearchTest MAP: 0.26
Multi-Modality/ Multi-Concept Fusion Methods: Validity Weighting

Validity Weighting:
- Work in the high-level feature space generated by classifier confidences for all concepts
- Basic idea is to give more importance to reliable classifiers.
- Revise distance metric to include a measure of the goodness of the classifier.
- Many fitness or goodness measures
 - Average Precision
 - 10-point AP
 - Equal Error rate
 - Number of Training Samples in Training Set.
- Computationally efficient and low-cost option of merit/performance-based combining multiple classifiers based on
- Improves robustness due to enhanced reliability on high-performance classifiers.
- Fusion Validation Set II MAP: 0.255
Video Concept Detection Pipeline: Semantic-Feature based Models

Annotation and Data Preparation

Feature Extraction

Low-level Feature-based Models

Fusing Models of each concept across low-level feature-based techniques

High-level (semantic) Context based Methods

Annotation

Feature Extraction

Region Extraction

Low-level Feature-based Models

Fusing Models of each concept across low-level feature-based techniques

High-level (semantic) Context based Methods

Videos

17 TREC Benchmark Concepts

47 Other Concepts

Best Uni-model Ensemble Run

Best Multi-modal Ensemble Run

Best-of-the-Best Ensemble Run

Annotation and Data Preparation

Feature Extraction

Low-level Feature-based Models

Fusing Models of each concept across low-level feature-based techniques

High-level (semantic) Context based Methods

17 TREC Benchmark Concepts

47 Other Concepts

Best Uni-model Ensemble Run

Best Multi-modal Ensemble Run

Best-of-the-Best Ensemble Run

Annotation

Feature Extraction

Region Extraction

Low-level Feature-based Models

Fusing Models of each concept across low-level feature-based techniques

High-level (semantic) Context based Methods

17 TREC Benchmark Concepts

47 Other Concepts

Best Uni-model Ensemble Run

Best Multi-modal Ensemble Run

Best-of-the-Best Ensemble Run
Semantic Feature Based Models
Incorporating Context

- Multinet: A probabilistic graphical context modeling framework that uses loopy probability propagation in undirected graphs. Learns conceptual relationships automatically and uses this learnt relationships to modify detection (e.g. Uses Outdoor Detection to influence Non-Studio Setting in the right proportion)

- Discriminant Model Fusion using SVMs: Uses a training set of semantic feature vectors with ground truth to learn dependence of model outputs across concepts.

- Discriminant Model Fusion AND Regression using Neural Networks and Boosting: Uses a training set of semantic feature vectors with ground truth to learn dependence of model outputs across concepts. Boosting helps especially with rare concepts.

- Ontology-based processing: Use of the manually constructed annotation hierarchy (or ontology) to modify detection of root nodes based on robust detection of parent nodes. i.e. Use “Outdoor” detection to influence detection
Problem:
Building each concept model independently fails to utilize spatial, temporal and conceptual context and is sub-optimal use of available information.

Approach: Multinet:
Network of Concept Models represented as a graph with undirected edges. Use of probabilistic graphical models to encode and enforce context.

Result:
- Factor-graph multinet with Markov chain temporal models improve mean average precision by more than 27% over best IBM Run for TREC 2002 and 36% in conjunction with SVM-DMF,
- Highest MAP for TREC’03
- Low training cost
- No extra training data needed
- High inference cost
- Fusion Validation Set II MAP: 0.268
- SearchTest MAP: 0.263
- References: Naphade et al (CIVR 2003, TCSVT 2002)
Multi-Modality/ Multi-Concept Fusion Methods: DMF using SVM

Using SVM/NN to re-classify the output results of Classifier 1-N.

- No normalization required.
- Use of Validation Set for training and Fusion Validation Set 1 for optimization and parameter selection.
- Training Cost low when number of classifiers being fused is small (i.e. few tens?)
- Classification cost low
- Used for fusing together multiple concepts in the semantic feature-space methods.

- Fusion Validation Set II MAP: 0.273
- SearchTest MAP: 0.247
Multi-Concept Fusion: Semantic Space Modeling Through Regression

Problem: Given a (small) set of related concept exemplars, learn concept representation.

Approach: Learn and exploit semantic correlations and class co-dependencies

- Build (robust) classifiers for set of basis concepts (e.g., SVM models)
- Model (rare) concepts in terms of known (frequent) concepts, or anchors
 - Represent images as semantic model vectors, or vectors of confidences w.r.t. known models
 - Model new concepts as sub-space in semantic model vector space
- Learn weights of separating hyper-plane through regression:
 - Optimal linear regression (through Least Squares fit)
 - Non-linear MLP regression (through Multi-Layer Perceptron neural networks)
- Can be used to boost performance of basis models or for building additional models

Fusion Validation Set II MAP: 0.274
SearchTest MAP: 0.252
References: Natsev et al (ICIP 2003)
Multi-Concept Fusion: Ontology-based Boosting

- **Basic Idea**
 - Concept hierarchy is created manually based on semantics ontology
 - Classifiers influence each other in this ontology structure
 - Try best to utilize information from reliable classifiers

- **Influence Within Ontology Structure**
 - **Boosting factor**: Boosting children precision from more reliable ancestors (Shrinkage theory: Parameter estimates in data-sparse children toward the estimates of the data-rich ancestors in ways that are provably optimal under appropriate condition)
 - **Confusion factor**: The probability of misclassifying C_j into C_i, and C_j and C_i cannot coexist

- **Fusion Validation Set II MAP**: 0.266
- **SearchTest MAP**: 0.261
- **References**: Wu et al (ICME 2004 - submitted)

![Ontology Learning Diagram]

- Outdoors
 - Natural-vegetation
 - Tree
 - Natural-non-vegetation
 - Greenery
 - Studio-setting
 - Non-Studio-setting
 - Confusion factor

- Indoors
 - Confusion factor
 - Boosting factor
 - House-setting
 - Meeting-setting
 - Smoke
 - Cloud
 - Sky
Video Concept Detection Pipeline: Post-Filtering

Annotation and Data Preparation

Feature Extraction

Region Extraction

V1
V2

Low-level Feature-based Models

Fusing Models of each concept across low-level feature-based techniques

High-level (semantic) Context based Methods

17 TREC Benchmark Concepts

47 Other Concepts

Best Uni-model Ensemble Run

Best Multi-modal Ensemble Run

Best-of-the-Best Ensemble Run

17 TREC Benchmark Concepts

Best Uni-model Ensemble Run

Best Multi-modal Ensemble Run

Best-of-the-Best Ensemble Run

Annotations

Training only

Training and testing

Videos

17 TREC Benchmark Concepts

47 Other Concepts

Best Uni-model Ensemble Run

Best Multi-modal Ensemble Run

Best-of-the-Best Ensemble Run

Annotations

Training only

Training and testing

Videos
Post Filtering - News/Commercial Detector

CNN template:

ABC templates:

Performance: Misclassification (Miss + False Alarm) in the Validation Set:
- CNN: 8 out of 1790 shots (accuracy = 99.6%)
- ABC: 60 out of 2111 shots (accuracy=97.2%)

Our definition of news: news program shots (non-commercial, non-miscellaneous shots)

Median Filters

Match Filter:
For each template:
\[S = \delta(S_C > \tau_C') \& \delta(S_E > \tau_E') \]
where C: Color; E: Edge, and
\[S_C = \frac{1}{N} \sum d(P_C, P_{MC}) > \tau_C \]
\[S_E = \frac{1}{N} \sum d(P_E, P_{ME}) > \tau_E \]
- Thresholds: \(\tau_C, \tau_E, \tau_C', \tau_E' \)
were decided from two training videos. All templates use the same thresholds. Templates were arbitrarily chosen from 3 training videos.
Performance is roughly log linear in terms of number of examples
Yet there are deviations
Can Log-linear be considered the default to evaluate concept complexity?
IBM has the best Average Precision at 14 out of the 17 concepts.
The best Mean Average Precision of IBM system (0.263) is 34 percent better than the second best.
Pooling skews some AP numbers for high-frequency concepts so it makes judgement difficult but can be considered a loose lower bound on performance.
Bug in Female_Speech model affected second level fusion of Female_Speech, News_Subject_Monologue, Madeleine_Albright among others. This was especially hurting the model-vector-based techniques (DMF, NN, Multinet, Ontology).
IBM has the highest Precision @ 100 in 13 out of the 17 concepts.
Mean Precision @ 100 of Best IBM System 0.6671
The best Mean Precision of IBM system is 28 percent better than the other systems.
Different Model-vector based fusion techniques improve performance for different classes of concepts.
Processing beyond single classifier per concept improves performance

- **If we divide** TREC Benchmark concepts into 3 types based on frequency of occurrence
 - Performance of **Highly Frequent** (>80/100) concepts is further enhanced by Multinet (e.g. Outdoors, Nature_Vegetation, People etc.)
 - Performance of **Moderately Frequent** concepts (>50 & < 80) is usually improved by discriminant reclassification techniques such as SVMs (DMF17/64) or NN (MLP_BOR, MLP_EFC)
 - Performance of **very rare concepts** needs to be boosted through better feature extraction and processing in the initial stages.

Based on Fusion Validation Set 2 evaluation, visual models outperform audio/ASR models for 9 concepts while the reverse is true for 6 concepts.

Semantic-feature based techniques improve MAP by 20 % over visual-models alone.

Fusion of multiple modalities (audio, visual) improves MAP by 20 % over best unimodal (visual) run (using Fusion Validation Set II for comparison)
Observations and Future Directions

- Generic Trainable Methods for Concept Detection demonstrate impressive performance.
- Need to increase Vocabulary of Concepts Modeled
- Need to improve Modeling of Rare Concepts
- Need Multimodality at an earlier level of analysis (e.g. multimodal model of Monologue (TREC’02) better than fusion of multiple unimodal classifiers (TREC’03)
- Multi-classifier, Multi-concept and Multi-modal fusion offer promising improvement in detection (as measured on TREC’02 and TREC’03 Fusion Validation Set 2 and in part also by TREC SearchTest 03)
Acknowledgements

Thanks for additional contributions from:

- Chitra Dorai (IBM) for Zoom-In Detector,
- Javier Ruiz-del-Solar (Univ. of Chile) for Face Detector,
- Ishan Sachedv (summer intern – MIT) for helping with Visual uni-models,

For collaborative annotation:

- IBM -- Ying Li, Christrian Lang, Ishan Sachedv, Larry Sansone, Matthew Hill,
- Columbia U. -- Winston Hsu
- Univ. of Chile – Alex Jaimes, Dinko Yaksic, Rodrigo Verschae
Concept Detection Example: Cars

- "Car/truck/bus: segment contains at least one automobile, truck, or bus exterior"

- Concept was trained on the annotated training set.

- Results are shown on the test set

<table>
<thead>
<tr>
<th>Run</th>
<th>Precision @100</th>
</tr>
</thead>
<tbody>
<tr>
<td>Best IBM</td>
<td>0.83</td>
</tr>
</tbody>
</table>
Concept Detection
Example: Ms. Albright

“Person X: segment contains video of person x (x = Madeleine Albright).”

Contributions of the Audio-based Models and Visual-based Models
-- Results at the CF2 (validation set)

<table>
<thead>
<tr>
<th>Run</th>
<th>Average Precision</th>
</tr>
</thead>
<tbody>
<tr>
<td>Best IBM Audio Models</td>
<td>0.30</td>
</tr>
<tr>
<td>Best IBM Visual Models</td>
<td>0.29</td>
</tr>
<tr>
<td>Best of Fusion</td>
<td>0.47</td>
</tr>
</tbody>
</table>

Results are shown on the test set
TREC Evaluation by NIST

<table>
<thead>
<tr>
<th>Run</th>
<th>Precision</th>
</tr>
</thead>
<tbody>
<tr>
<td>Best IBM</td>
<td>0.32</td>
</tr>
</tbody>
</table>