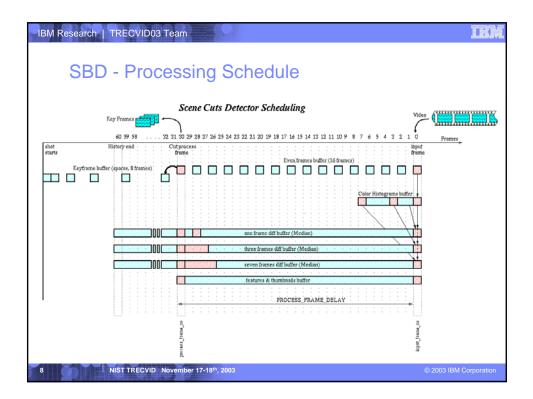
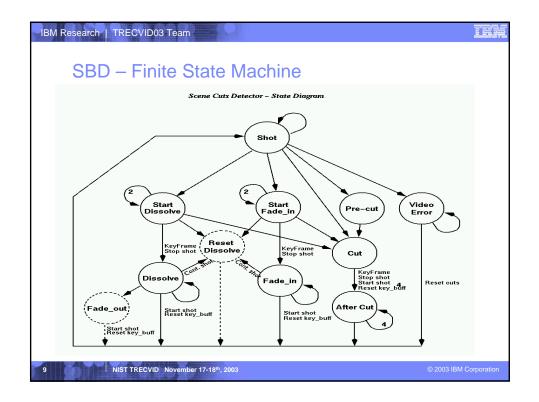
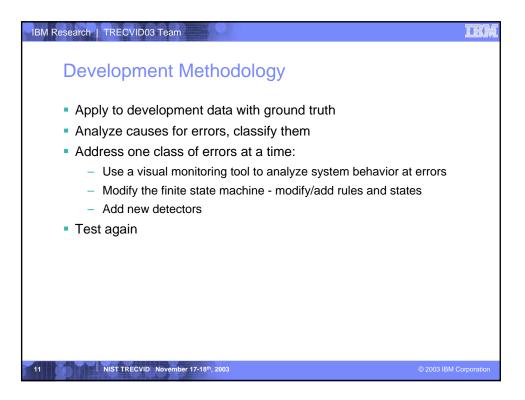
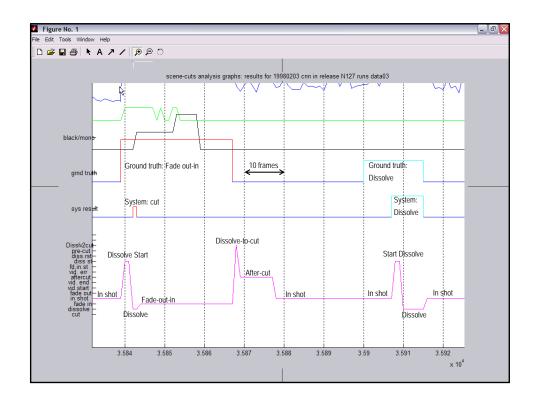

IBM Research TRECVID03 Team	IRM
Shot Boundary Detection	
Temporal segmentation of the video into shots	
Detect location and duration of all shot transitions of all kinds:	
 cuts, dissolves, fades, wipes, checkerboard, etc. 	
 Desired: accurate detection, frame-accurate location 	
Challenges: It would be so much easier if there were no	
 Fast object or camera motion 	
 Fast illumination changes: pop concerts, driving, backlight, 	
 Fire, flags in the wind, sea waves, … 	
 Specularities, shadows, reflections from glass, water, … 	
 Instantaneous illumination changes due to flash photography 	
 Very short shots (up to single-frame "shots" in the Search test set) 	
 Very long gradual transitions 	
 Text overlay, graphics, animation 	
 Screen split, video in video 	
 Video artifacts: MPEG errors, compression noise, camera noise, … 	
2 NIST TRECVID November 17-18 th , 2003	Corporation

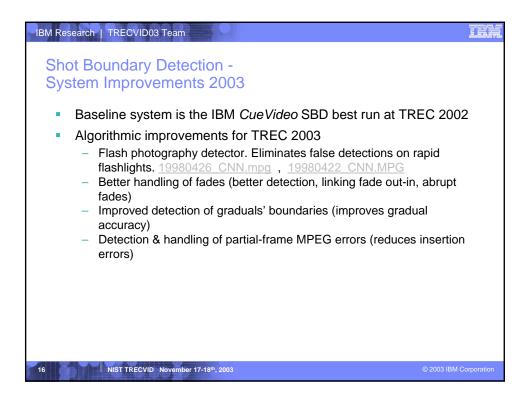






IBM Research TRECVID03 Team	IEM
Adaptive Thresholds	
Observe:	
 Frames similarity changes significantly across different shots and videos 	
 Frames dissimilarity increases as the frames are wider apart of each other 	
Adaptive thresholds are required	
 Collect statistics of frames similarity in a 61-frames buffer around the processed frame 	
 Assumption: at least 25% of the buffer content is within-shot 	
- Use rank filtering to determine the threshold: $C \cdot (Buff @ 25\%)$	
- Apply a hysteresis when change between shot and transition states. $C_{within_shot} > C_{within_transition}$	
6 NIST TRECVID November 17-18 th , 2003 © 2003 IBM C	orporation

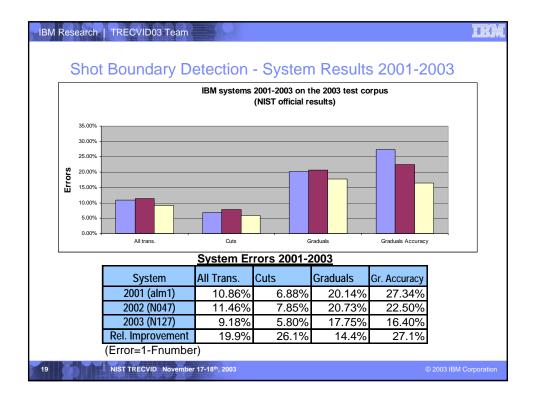




IBM CueVideo - Microsoft Internet Explorer File Edit View Favorites Tools Help	
	· · · · · · · · · · · · · · · · · · ·
🔇 Back 🔹 💭 = 🗷 🙆 🏠 🔎 Search 🤺 Favorites 🜒 Media 🤣	
Address Address http://mbergdsk.almaden.ibm.com/cgi-bin/sdrphones.exe?CGI_URL=/cgi-bin/sdrphones.exe	
Links 🛅 Buy 🛅 Conf 📋 CueVideo 🍋 CVision 🫅 Finance 🛅 IBM Admin 🛅 IBM Rsrch I	🗀 TREC03 🦳 Vision 3 🍓 AlmBI.Pgs 🍓 ATTbi 🔮 BluePeople 👹 CiteSeer 🛛 😕
Basic Search Soft-Boolean Search Load Results Advanced Search	Slideshow
Basic Search	Speed 💌 🚳
	Video
Select corpus	Storyb. Anim
	Prev Next 1-800-510-PLUS
	Replay Replay
	matlab_example_edit_subframe2.avi
Results for: '867.663489' in '19980203_cnn' Found 1 results	
Save marked results as Save	
No# Score Video Segment Shots	
19980203_cnn +	
1 • 100.00 00:14:27-00:14:27 video segment	
Offset 00:14:27-00:14:27	
©IBM Multimedia	Mining 2003
	. mining 2005
	🥥 Internet

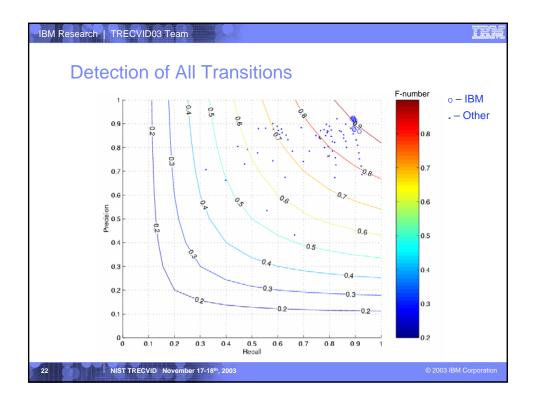
(1) IDH Curvider - Historiet Fundament	
BIM CueVideo - Microsoft Internet Explorer Ele Edit View Favorites Tools Help	
	N
🔇 Back 🔹 🕥 👻 📓 🏠 🔎 Search 🤺 Favorites 🔇 Media 🚱 🔗 -	i 😓 🔁 🛀 🦓
Address 💩 http://mbergdsk.almaden.ibm.com/cgi-bin/sdrphones.exe?CGI_URL=/cgi-bin/sdrphones.exe&IND	EX_SELECT=19980203_cnn&QUERY_TEXT=867.663489&BRMODE=MAINOFFSET 💌 🋃 Go
Elinks 🦳 Buy 🦳 Conf 😭 CueVideo 🏠 CVision 🏠 Finance 📄 IBM Admin 🛅 IBM Rsrch 🍋 TR	LEC03 🛅 Vision3 🍘 AlmBl.Pgs 💩 ATTbi 👹 BluePeople 🍘 CiteSeer 🛛 👋
Basic Search Soft-Boolean Search Load Results Advanced Search	Slideshow
Basic Search	Speed 💌 💿
	Video
Select corpus	Storyb. Anim
	Prev Next
	Replay
Results for: '867.663489' in '19980203_cnn' Found 1 results	
Save marked results as Save	
No# Score Video Segment Shots	
19980203_cnn - 🗆 🗆 +	
1 (100.00 00:14:27-00:14:27 Offset video segment 00:14:27:00:14:27	
Offiset 00:14:27-00:14:27	
	- 2002
©IBM Multimedia Mini	mg 2005
a)	Internet
	S Internet

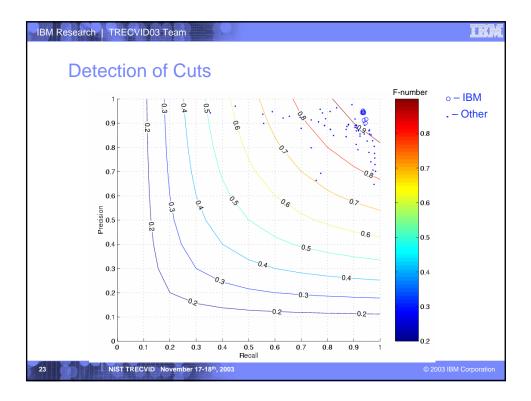
IBM Research	TRECVID03	Team							IEM	
 Results on SBD Development Set Changes were tested on a development set with manually labeled frame-accurate ground truth: 10 video segments, 5 minutes each. Total of 363 cuts, 145 graduals. 										
			<u>10 Runs on d</u>	evelopment s	<u>ət</u>					
	All Tra	ansitions	Cuts	Cuts Gradual transitions Gr		Gradual transitions G				
	Recl	Prec.	Recl	Prec.	Recl	Prec.	Recl	Prec.		
alm1	0.951	0.881	0.99	0.94	0.86	0.74	0.65	0.94		
N04	7 0.947	0.887	0.98	0.94	0.87	0.76	0.74	0.92		
N11	0.950	0.905	0.98	0.95	0.88	0.8	0.74	0.92		
N11	9 0.941	0.938	0.98	0.98	0.85	0.84	0.81	0.92		
N12	0.944	0.938	0.98	0.98	0.86	0.84	0.82	0.92		
N12	2 0.944	0.938	0.98	0.98	0.86	0.84	0.82	0.92		
N12	3 0.950	0.930	0.98	0.98	0.88	0.81	0.86	0.91		
N12	6 0.941	0.940	0.98	0.97	0.85	0.87	0.77	0.93		
N12	7 0.941	0.947	0.98	0.98	0.85	0.87	0.81	0.93		
N12	8 0.944	0.941	0.98	0.98	0.86	0.85	0.85	0.92		
17	NIST TRECVID	November 17-	18 th , 2003					© 2003 IBM	Corporation	

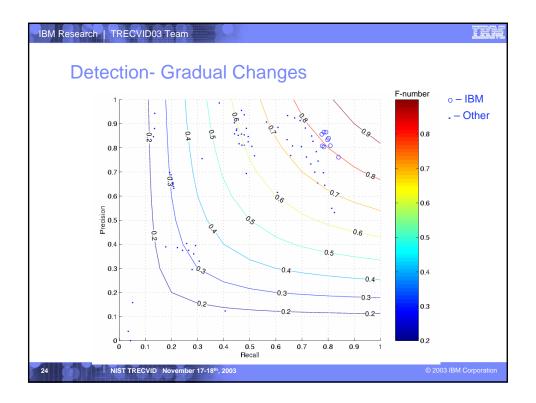

IBM Research | TRECVID03 Team

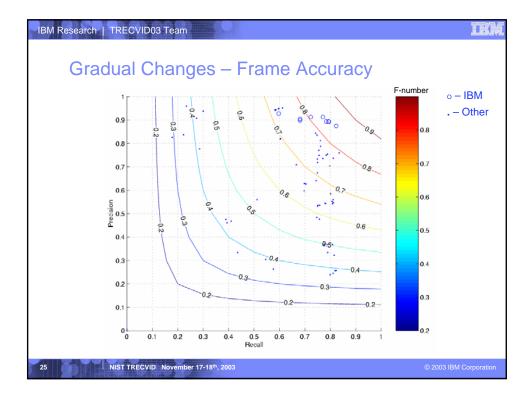
IEK

NIST Results on the Test Set


- Trends are similar to the results on the Development set
- Absolute values are typically 0 to 0.06 lower
- Cuts one frame shift <u>10 Runs on NIST Test set</u>


		All Transitions		Cuts		Gradual tra	nsitions	Graduals a	accuracy
		Recl	Prec.	Recl	Prec.	Recl	Prec.	Recl	Prec.
	alm1	0.915	0.870	0.947	0.916	0.84	0.761	0.597	0.928
	N047	0.895	0.872	0.944	0.9	0.778	0.808	0.681	0.899
	N110	0.893	0.879	0.939	0.911	0.784	0.804	0.681	0.905
	N119	0.893	0.918	0.936	0.942	0.792	0.865	0.784	0.894
	N120	0.897	0.911	0.938	0.942	0.802	0.84	0.793	0.894
	N122	0.897	0.911	0.938	0.942	0.802	0.84	0.793	0.894
	N123	0.898	0.905	0.936	0.946	0.809	0.809	0.823	0.875
	N126	0.886	0.916	0.932	0.943	0.776	0.856	0.723	0.913
	N127	0.892	0.922	0.937	0.947	0.784	0.865	0.771	0.913
	N128	0.894	0.916	0.935	0.951	0.798	0.833	0.794	0.893
-			100						
18	NIST T	RECVID Nov	ember 17-18 th	, 2003				© 20	003 IBM Corporation




Run#	BD Results TREC-VID2003 Sorted by F# Per Each					ale			Gradus	Graduals accuracy						
Curi <i>m</i>	Sys	Rcl	Prc	F#	Sys	Rcl	Prc	F#	Sys	Rcl	Prc	F#	Sys	Rcl	Prc Prc	F#
2003	n127	0.892	0.925	0.908	n128	0.935	0.951	0.943	n119	0.792	0.865	0.827	n123	0.823	0.875	0.84
	n119	0.894	0.921	0.907	n127	0.937	0.947	0.942	n127	0.784	0.865	0.823	n128	0.794	0.893	0.84
	n120	0.899	0.913	0.906	n123	0.936	0.946	0.941	n120	0.802	0.840	0.821	n120	0.793	0.894	0.84
	n122	0.899	0.913	0.906	n120	0.938	0.942	0.940	n122	0.802	0.840	0.821	n122	0.793	0.894	0.84
	n128	0.895	0.917	0.906	n122	0.938	0.942	0.940	n128	0.798	0.833	0.815	n127	0.771	0.913	0.83
	n126	0.887	0.919	0.903	n119	0.936	0.942	0.939	n126	0.776	0.856	0.814	n119	0.784	0.894	0.83
	n123	0.899	0.906	0.902	n126	0.932	0.943	0.937	n123	0.809	0.809	0.809	n126	0.723	0.913	0.80
2001	nalm1	0.916	0.868	0.891	z	0.893	0.976	0.933	nalm1	0.840	0.761	0.799	а	0.835	0.759	0.79
baseli		0.894	0.881	0.887 0.885	nalm1	0.947	0.916	0.931	n110	0.784	0.804	0.794 0.793	С	0.742	0.844	0.79 0.78
2002	nu47	0.896	0.875	0.885	n110 n047	0.939 0.944	0.911	0.925	n047 c	0.778 0.737	0.808 0.849	0.793	с с	0.748 0.761	0.835 0.812	0.78
	C C	0.863	0.898	0.880	n047 C	0.944	0.891	0.921	с с	0.737	0.849	0.789	c n110	0.761	0.812	0.78
	c	0.803	0.858	0.875	c	0.942	0.872	0.910	c	0.693	0.002	0.789	n047	0.681	0.899	0.77
	c	0.829	0.921	0.873	c	0.905	0.917	0.914	c	0.742	0.827	0.782	C	0.762	0.788	0.77
	c	0.904	0.832	0.867	s	0.958	0.868	0.911	c	0.672	0.924	0.778	a	0.812	0.737	0.77
	0	0.845	0.868	0.856	r	0.961	0.855	0.905	c	0.755	0.324	0.769	a	0.789	0.754	0.77
	c	0.909	0.809	0.856	c	0.966	0.851	0.905	c	0.645	0.934	0.763	a	0.784	0.750	0.76
	0	0.839	0.871	0.855	0	0.910	0.892	0.901	c	0.762	0.745	0.753	c	0.755	0.770	0.76
	0	0.855	0.854	0.854	0	0.911	0.889	0.900	0	0.698	0.805	0.748	a	0.771	0.735	0.75
	0	0.855	0.839	0.847	0	0.905	0.890	0.897	0	0.717	0.762	0.739	c	0.756	0.749	0.75
	0	0.863	0.826	0.844	v	0.940	0.855	0.895	c	0.783	0.697	0.738	a	0.798	0.704	0.74
		0.000	0.020	0.040		0.911	0.880	0.895	0	0.734	0.733	0.733	v	0.612	0.952	0.74
Four	of the ten	IBM rup	s ara bir	ablighte	d.	0.835	0.963	0.894	0	0.664	0.808	0.729	c	0.749	0.733	0.74
						0.972	0.827	0.894	0	0.643	0.834	0.726	v	0.598	0.950	0.73
IBM's	s best sys	tem of TI	RECVID	2001,	2002,	0.905	0.882	0.893	0	0.749	0.699	0.723	с	0.750	0.718	0.73
and 2	2003, and	the bas	eline 20	03 syst	tem.	0.918	0.869	0.893	0	0.608	0.885	0.721	v	0.596	0.947	0.73
	-					0.918	0.868	0.892	c	0.787	0.645	0.709	nalm1	0.597	0.928	0.72
All ton	seven ru		moneur	an are l	RM	0.910	0.868	0.889	0	0.657	0.768	0.708	v	0.586	0.944	0.72
All top	seven ru	ins in all l	measure	es are l	DIVI.	0.924	0.855	0.888	0	0.760	0.654	0.703	v	0.583	0.944	0.72
	с	0.916	0.753	0.827	а	0.924	0.855	0.888	0	0.564	0.907	0.696	v	0.583	0.941	0.72

IBM Research TRECVID03 Team	
Summary	
 Multiple pairs of frames Finite State Machine Frame comparison: RGB, Edges, Thumbnails Adaptive thresholds System monitoring tools Systematic work with an SBD development set 	
21 NIST TRECVID November 17-18 th , 2003	© 2003 IBM Corporation

