IBM Systems: Overview

Speech-based Retrieval

"White House with running fountain"

Process Query

Rank Shots

Interactive Manual Automatic

Fuse

3 different strategies

Video-based Retrieval

Process Query

Rank Shots

Interactive Manual Automatic

Highlights:
- Fusion of two independent unimodal runs
- Fully automatic runs in both modalities
Visual Retrieval System

- **Highlights**
 - Visual features: color, texture, edges, shape, motion, model vectors
 - Semantic features: limited semantic vocabulary (approx. 70 statistical models)
 - Filters: news, commercials, CNN/ABC/C-SPAN, videos, clusters

- **Performance (MAP)**
 - Interactive CBR/MBR: 0.127
 - Manual CBR/MBR: 0.046
 - Automatic CBR: 0.043
Query Formulation

- Textual query formulation
 - Keyword-based
 - Boolean keyword-based
 - Example:
 - Query topic 113: *Find shots with one or more snow-covered mountain peaks or ridges. Some sky must be visible behind them.*
 - Manual keyword query: snow cover mountain peak ridge sky visible
 - Automatic keyword query: Remove “Find shots with one or more” prefix
 - Manual Boolean query: (ski | downhill) & mountain & (snow | glacier | cliff) & (snow-storm) & (summit | peak) & (rocky | himalayas | antarctica | Alaska | everest) & (climbers & rescue | fall | avalanche)

- Visual query formulation
 - Content-based
 - Query with each positive example
 - Use OR semantics for fusing results from multiple queries
 - Model-based
 - Like CBR but using semantic features (model vectors)
 - MBR query 117: 1.0 People - 0.5 Indoors - 0.5 Sport_Event
 - Boolean content-based/model-based?
Visual Query Examples: What Is A Picture Really Worth?

<table>
<thead>
<tr>
<th>Query Topics</th>
<th>Query Topic Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>Find scene: Aerial views with roads & buildings</td>
<td> </td>
</tr>
<tr>
<td>Find event: Basketball score</td>
<td> </td>
</tr>
<tr>
<td>Find object: Cup of coffee</td>
<td> </td>
</tr>
<tr>
<td>Find person: Pope John Paul II</td>
<td> </td>
</tr>
</tbody>
</table>
Visual Query Formulation: Approaches

Statistical Modeling → Need lots of training data, incl. negative examples

Relevance Feedback → handles rare classes but not diversity; requires interaction

Multi-Example CBR → addresses rare & diverse semantic classes; no interaction
Multi-Example Content-Based Retrieval (MECBR)

- **Problem**
 - Given a (small) set of concept exemplars, learn concept representation & formulate visual query

- **Approach:** bridge gap between CBR and statistical modeling
 - Categorize examples into distinct visual subsets
 - Select representative(s) for each category
 - Execute content-based query with each representative
 - Fuse results within/across categories

- **Issues**
 - Categorization: GMM, clustering, greedy
 - Representatives: centroid, weighted sampling
 - Feature selection: color, texture, edge, models
 - Feature granularity: global, regional (layout, grid)
 - Feature ambiguity: multiple-instance learning
 - Fusion:
 - AND logic within categories
 - OR logic between categories
MECBR Approach Details

- **Step 1: Categorize examples:**
 - K-means, GMM unreliable (too few examples)
 - Use greedy selection to order & select examples iteratively by their “distinction”
 - Distinction measured as distance to closest previously formed category
 - If distinction > cluster radius threshold, label example as “distinct” (new category)
 - If not, categorize example to closest cluster

- **Step 2: Select category representatives**
 - Statistical cluster measures not robust (unreliable means, singular variances)
 - Use weighted sampling of category examples
 - Weights proportional to distance of representative to cluster centroid

- **Step 3: Execute content-based queries**
 - 166-D HSV color correlograms & 46-D model vectors with statistical normalization
 - Query example model vectors automatically tell us which models “fired” up
 - Feature granularity: global for query examples and global/regional for target images

- **Step 4: Aggregate content-based retrieval results**
 - Feature fusion: similarity score averaging
 - Example fusion (same category): AND logic (weighted AVG of similarity scores)
 - Category fusion: OR logic (MAX similarity)
Visual Categorization Example: Basketball
Automatic Visual Query Formulation: Summary

- **Challenges**
 - No prior knowledge of query topic, examples, or dataset
 - Unreliable features when using few examples
 - More examples not always good—a single poor example could be devastating
 - Differentiating between good and bad (resolving ambiguity) is not easy...
 - Robust automatic categorization is also hard

- **Text processing analogs**
 - MECBR \rightarrow Boolean text queries
 - Clustering & feature aggregation \rightarrow stemming
 - Weighted cluster sampling \rightarrow removing stop words

- **Some lessons**
 - Categorization improves performance by 30-40%
 - Semantic features outperform visual features by 10-15%
 - Regional matching outperforms global matching by 5-10%
 - Fusion of features, examples, and categories boosts performance by 30-50%
 - Automatic MECBR run performs within 10% of manual run!
IBM Systems: Overview

Speech-based Retrieval

"White House with running fountain"

Process Query

Rank Shots

Fuse

3 different strategies

Video-based Retrieval

Process Query

Rank Shots

Interactive Manual Automatic

Interactive Manual Automatic

Highlights:
- Fusion of two independent unimodal runs
- Fully automatic runs in both modalities
Fusion SDR – Extension of IBM TRECVID02 System

Fusion system performance on dev. set is 25% higher than of best individual system
Best IBM Unimodal system. MAP = 0.12
Automatic SDR system

1. Speech transcripts (ASR)
2. Divide into documents
3. Remove frequent words, POS-tag + morph
4. Create Morph Index
5. RETRIEVE: rank documents
6. Map Documents to shots

- Query Term String
- Remove "Find, Shot(s), With, of" POS-tag + morph
- Eg. Use 100 word, overlapping windows
- Eg. "RUNS" -> RUN
- Eg. OKAPI, BOOLEAN

Retrieved shots

MAP = 0.09 vs. 0.22 best MAP
Fusion I - Query and Data independent

Speech-based Retrieval

“Shots of Yasser Arafat” → Process Query → Rank Shots

Video-based Retrieval

Process Query → Rank Shots

Rerank only top 1000 shots

Fuse

w1 and w2 are query and data independent (hurts?). MAP = 0.123
Fusion I - Query and Data independent

Original SDR AP = 0.23
Visually re-ranked AP = 0.27
Fusion II - Query dependent weighting

Speech-based Retrieval

"White House with running fountain"

Process Query

Rank Shots

Manual

Video-based Retrieval

Process Query

Rank Shots

Automatic

w1(qj)

w2(qj)

Fuse

w1 and w2 are query dependent. w1+w2 = 1

Weights manually selected by the user based only on the query

MAP = 0.146
Example: Baseball

- “Find shots from behind the pitcher in a baseball game as he throws a ball that the batter swings at”

- Manual SDR + automatic CBR

- Result of Manual Search on the Test set

- 60 of the top 100 are correct

<table>
<thead>
<tr>
<th>Run</th>
<th>Average Precision</th>
</tr>
</thead>
<tbody>
<tr>
<td>Best IBM</td>
<td>.39</td>
</tr>
<tr>
<td>Best non-IBM</td>
<td>.43</td>
</tr>
<tr>
<td>Average non-IBM</td>
<td>.125</td>
</tr>
</tbody>
</table>
Query Topics and Modality Performance

<table>
<thead>
<tr>
<th>Query Types</th>
<th>Query Specificity</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Generic</td>
</tr>
<tr>
<td>Find objects</td>
<td></td>
</tr>
<tr>
<td>Cats:</td>
<td>*********</td>
</tr>
<tr>
<td>Cup of coffee:</td>
<td>*********</td>
</tr>
<tr>
<td>Helicopters:</td>
<td>*********</td>
</tr>
<tr>
<td>Tanks:</td>
<td>*********</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Find people</td>
<td></td>
</tr>
<tr>
<td>People diving:</td>
<td>*********</td>
</tr>
<tr>
<td>Urban people:</td>
<td>*********</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Find events</td>
<td>Rocket launch:</td>
</tr>
<tr>
<td></td>
<td>Airplane take-off:</td>
</tr>
<tr>
<td></td>
<td>Baseball pitch:</td>
</tr>
<tr>
<td></td>
<td>Incoming train:</td>
</tr>
<tr>
<td></td>
<td>Basketball hoop:</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Find scenes</td>
<td>Fires:</td>
</tr>
<tr>
<td></td>
<td>Snow mountains:</td>
</tr>
<tr>
<td></td>
<td>Aerial views:</td>
</tr>
<tr>
<td></td>
<td>Roads with cars:</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Legend:
- ***Speech***
- ***Content***

Better Modality Breakdown (# queries):
- **Speech**: 11
- **Content**: 9
- **Either**: 5
Conclusions

- Automatic video-MECBR is close to manual video-CBR
- Automatic SDR outperforms automatic/manual video-CBR
 - Speech modality better for 50-60% of the given query topics
- Multimodal runs outperformed unimodal runs
 - 20% improvement for manual runs, 40% for interactive runs
 - Improvement from last year’s IBM performance
- System deficits:
 - Did not leverage annotators such as named entity detectors, face recognizers, text OCR, etc.
 - Most processing at shot keyframe level—hurts with long shots
- Late fusion approach: only explored limited schemes for system combination in the 15-minute limit
 - Query & data independent
 - Query dependent & data independent
 - Query and data dependent