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1. INTRODUCTION 

 
KDDI R&D Laboratories has been participating in the 
past TREC conferences for text retrieval tasks. In this 
year we are newly participating in TRECVID 2003, 
namely the shot boundary determination and story 
segmentation tasks. In shot boundary determination 
task, we applied our proprietary shot segmentation 
algorithm originally proposed in [1] and slightly 
upgraded for this task. In our methods, statistics such as 
histogram as well as motion vector information from 
MPEG coded bitstream are used to adaptively 
determine various types of shot boundaries. For the 
story segmentation task, we conducted experiments 
under the conditions “Audio/Video” and “ASR Only”. 
Our officially submitted results were based on the ASR 
Only condition, where we implemented a story 
segmentation method based on the TextTiling 
algorithm. This paper also describes our Audio/Video 
story segmentation experiments conducted after official 
result submission.  
 

2. SHOT BOUNDARY DETERMINATION 
 
This section describes our shot boundary determination 
methods and experiments. 
 
2.1 Partial MPEG decoding 
DCT DC coefficients give the lowest frequency 
component of image and at the same time they 
represent spatially scaled image since DC component is 
a block averaged value [2]. Furthermore, in I-pictures 
these coefficients are directly obtained during VLD 
(Variable Length Decoding) process without time 
consuming process such as Inverse DCT. In [2], more 
than 90% of abrupt scene changes are detected using 
DCT DC information on I-picture interval. However, 
this low temporal resolution may limit detection 
accuracy; for example, a scene with a very fast panning 
may change whole scene after one GOP period, which 
leads to false shot boundaries since the current I-picture 
is completely different from the previous one. 
Therefore in order to enhance temporal resolution of 
shot boundary determination, coded frame information 

on P- and B-picture is required. DC components in 
these pictures can be obtained after some manipulation. 
In P- and B-pictures, although some of macroblocks 
may be intra coded, most of the coded blocks are inter 
coded where only prediction error after motion 
compensation is coded using DCT. In addition, there 
may be skip blocks and MC no Coded blocks where no 
DCT coefficient is coded. 

DCT DC image is a reduced size image by 1/8 
both horizontally and vertically. Therefore DC 
components of P- and B-pictures are obtained using 
motion compensation in reduced size image domain. 
There are two ways to obtain DCT DC image for P-/B-
pictures. One is to apply motion compensation (MC) 
using reduced size motion vectors in 1/8. The other is 
to apply weighted motion compensation reflecting 
contribution of all the blocks used for motion 
compensation [9][14]. Figure 1 shows a block diagram 
of the latter scheme. Subjectively, it is found that the 
latter has less visible noise due to motion compensation 
mismatch. Therefore we use the latter method to obtain 
DCT DC images for P- and B-pictures. 
 

 
Figure 1. DC image with weighted MC 

 
 
2.2 Shot boundary determination methods 
2.2.1 Abrupt shot boundary determination 
By incorporating the MC operation mentioned above, 
P- and B-pictures are roughly reconstructed so that 
temporal resolution can be greatly improved. 
Previously a good deal of research work has been 
reported on shot boundary determination [2-13]. The 
major technique includes pixel differences, histogram 
comparison, edge differences statistical differences, 
compressed data amount differences, and motion 
vectors. Although either one of the above techniques 
achieves relatively high accuracy, each has its own 
disadvantage [1]. 
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We proposed shot boundary determination from I-
picture sequence of MPEG coded video in 1994 [2]. 
We use both pixel differences and histograms methods 
to overcome problems when either one of them is used. 
Here, we extend this approach to detect shot boundaries 
in one frame unit. 

 
Pre-processing 
To exclude undesired false detection mainly due to 
camera motion and object movement, only frames with 
high inter-frame difference are picked up for the 
succeeding shot boundary determination. The inter-
frame difference is obtained by: 
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, where M and N are total number of 8×8 blocks in a 
frame for vertical and horizontal direction, respectively. 
For example, in MPEG-1 in SIF size (352×240), M=30 
and N=44. Yn(i,j) is the luminance block average at 
block (i,j) in the n th frame. Since DCT DC component 
of each 8×8 block is obtained from section 2, Yn(i,j) for 
each frame is directly given from this value. Then the 
following equation is used as pre-processing: 

Dn > Th_pre    (2) 

Only those frames which satisfy the above conditions 
are further investigated in abrupt shot boundary 
detection in the following. 
 
Shot boundary determination using luminance and 
chrominance change 
Both luminance and chrominance characteristics 
dramatically change at shot boundaries. Thus ordinary 
shot boundary are detected when both the luminance 
and chrominance information greatly change. We use 
temporal peak detection of both inter-frame luminance 
difference and chrominance histogram correlation [2]. 
A frame is declared as a shot boundary when: 

�Dn > Dn - 1, Dn + 1   and   ρn > ρn - 1, ρn + 1 (3) 

Here, � is a weighting factor for the detection. ρn is 
chrominance histogram correlation obtained by: 
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, where Hn,k,l is a chrominance histogram matrix. The 
histogram is obtained classifying DC chrominance Cb 
and Cr data in a frame into hc classes for each 
chrominance component. Then two dimensional hc×hc 

histogram matrix in the n-th frame Hn,k,l (k, l = 0, 1, 2... 
hc-1) is obtained. 

When shot boundary exists on scenes with large 
motion, it is very difficult to find temporal peak using 
frame difference since frame difference may be very 
large all the way due to motion so that Eq. (3) may not 
detect such shot boundaries. Therefore, only 
chrominance correlation is used to detect such shot 
boundary for those frames which don’t satisfy Eq. (3). 

ρn > Th_ac   (5) 

, where Th_ac is a threshold value for determination of 
temporal peak in ρn. 

Furthermore, when consecutive two shots are 
different only in camera angle, color histogram will be 
similar and thus it is difficult to detect shot boundary 
by the above conditions such as Eq. (3) and (5). 
However, since pixel difference usually has a very 
large peak at these shot boundaries, peak detection of 
luminance difference are applied. When either of the 
following equation is satisfied for those frames which 
are not declared as scene change in the above process, 
the frame is declared as shot boundary. 
 

�Dn > Dn - 1, Dn + 1  (6) 
Dn – Th_ad > Dn - 1, Dn + 1  (7) 

 
, where � and Th_ad are a weighting factor and a 
threshold value for detecting a temporal peak in Dn, 
respectively. Basically, Eq. (6) will detect shot 
boundary in similar scenes. However, Eq. (7) is also 
used for such cases when motion is involved since all 
of the inter-frame differences are kept relatively high 
and the ratio of Dn to Dn-1 or Dn+1 may not be 
significantly high enough to find the shot boundary 
using Eq. (6). 
 
2.2.2 Dissolve shot boundary determination 
Basic detection algorithm of dissolve and fade 
In gradual transition such as dissolve and fade in/out, 
two different shots are usually synthesized in the 
course of transition. For example, in dissolve transition, 
gradual change from one shot to another occurs with 
simultaneous decrease and increase of intensities of 
preceding and following shots. Since both shots are 
synthesized during transition, activity of the each frame 
shows U-shape curve surrounded by flat shoulders 
when dissolve occurs [13]. In the case of fade in/out, 
activity curve shows monotonous increase/decrease. 
The frame activity for n-th frame FAn is described as: 
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In [13], positive peak before dissolve and negative 
peak during dissolve are used to detect U-shape 
variance curve. It assumes that only single pair of 
positive and negative peaks with a large peak to peak 
difference exists during dissolve period. However, in 
the actual video sequences, it rarely shows these shapes 
due to motion and local fluctuations. However it is 
difficult to find real positive and negative peaks of 
dissolve region even if the variance shows U-shape 
curve [1]. Furthermore, peak to peak difference may 
not always be large due to picture flatness or motion. 

In order to detect these shapes avoiding false 
detection, we have applied filtering process as noise 
reduction for the DCT DC activity data. Since dissolve 
and fade processes take long duration, temporal 
filtering with long tap is suitable to absorb spontaneous 
fluctuations and examine long duration variation. As a 
temporal filtering, we use a moving average of 
activities MAn for a period of frames VF which includes 
current and previous (VF -1) frames: 

∑
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After temporal filtering, temporal peak or monotonous 
increase/decrease can be detected. However, since 
duration of dissolve and fade depends on how the shots 
are edited, such a technique as simple peak detection 
may result in false detection. Furthermore, very flat U-
shape curve will be expected when a dissolve transition 
occurs in between relatively flat shots. Therefore it is 
necessary to contrast these curves with others. We use 
first order derivative of the filtered activity DAn in 
order to detect these curves. It is obtained as: 

1−−= nnn MAMADA   (10) 

In TRECVID data, the derivative curve tends to be 
negative in our preliminary experiment. Therefore 
dissolve period are found when the derivative curve 
continuously takes negative values during a certain 
period. Fade in/out period can also be found when only 
positive/negative period is detected. In order to exclude 
undesired detection in such scenes as motion, we use 
chrominance correlation between n-th and (n-dd)-th 
frames to confirm that the region is a shot boundary 
candidate. Therefore dissolve sequence candidates are 
detected using the following equations. 

DAn < -Th_dis1 and  ρn, n - dd < Th_dis2 (11) 

Between n-th and (n-dd)-th frame, if the number of 
frames satisfying Eq. (11) is larger than Th_dis3, a 
dissolve transition is determined in this period. In order 
to avoid detecting motion scenes, the following 
equation should be considered:  

k < Th_dis4   (12) 

, where k is number of non-intra blocks. Dissolve 
detection is carried out for those frames which are 
determined as non abrupt scene change in the previous 
section. 

Although the above equations can detect most of 
the dissolving, there are two problems in terms of 
detection accuracy. One is that it is difficult to detect 
those dissolve transitions in similar color shots or in 
shots with large flat areas, since conditions in Eq. (11) 
assumes that two shots have different color 
distributions with non-flat regions. The other is that it 
may also detect panning or motion scenes as dissolving 
since these scenes may have similar activity curve in 
such cases when scenes with large flat object appear 
during panning. In the following, countermeasures for 
these errors in the detection are described. 
 
Dissolve determination in shots with flat areas 
As for the first problem described above, it is necessary 
to have more detailed observation of activity variation 
for those frames which are determined as non-dissolve 
in Eq. (11). Since negative period is continuing in 
dissolve as described earlier, closer investigation of 
these characteristics is carried out as follows: 
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where dhdmndmndmnpn −−−−−= ,,1,_ L    (14) 

 
Here, detection of negative period is carried out by 
observing the derivative of activity DAi and sum of DAi 
in a period n_p are greater than threshold values -
Th_ea and -Th_sa, respectively as shown in Eq. (13). 

Although the above equations can detect 
dissolving which has relatively small variations in 
activity during dissolving, they may also detect such 
scenes as very slow panning since both characteristics 
will show relatively flat activity curve. In order to 
distinguish dissolve from such non-dissolve scenes, we 
have also used prediction error information obtained 
from coded bitstream. In the scenes with very small 
motion, most of the blocks are successfully motion 
compensated and prediction error in the MC block is 
relatively small. On the other hand, in the case of 
dissolve, inter-frame difference may be as small as that 
of small motion case. However, prediction error is large 
in dissolve transition since motion compensation is 
usually ineffective in the course of synthesizing of two 
shots. The normalized prediction error NPEn in n-th 
frame is obtained as following equation. 
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Here, DCn(i,j) is DC component of prediction error 
which is directly obtained from (0,0) element of DCT 
coefficients. MN is total number of blocks in a frame 
and k is number of non-intra blocks. Since NPEn in the 
dissolve period has a large value, the numbers of 
frames which have a large prediction error around 
dissolving are compared with threshold values which 
are shown in the following equations. 
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where 
dfnnnpdd −−= ,,1,_ L

dbdfndfndfnpbd −−−−−= ,,1,_ L      (17) 
 
Here PEfl is “1” if normalized prediction error NPEl in 
l-th frame is larger than the threshold value Th_pe. 
Using predetermined values of df and db, dd_p and 
bd_p are periods during dissolve and before the 
dissolve, respectively. Therefore, dissolve in flat region 
is detected when Eq. (13) and Eq. (16) are satisfied. 
 
Exclusion of panning/motion scenes in dissolve 
determination 
Although panning/motion scenes when flat object is 
appeared have very similar activity curves to normal 
dissolve case as described earlier, panning/motion 
scenes have different characteristics concerning 
motion. In panning/motion scenes, most of all the 
macroblocks will be motion compensated and inter-
frame difference will be very large, whereas in the case 
of dissolving the number of motion compensated block 
is usually small and inter-frame difference is also small. 
Therefore, we use the number of motion compensated 
blocks and inter-frame difference in order to exclude 
these false scenes from detected dissolve frames. As for 
number of motion compensated blocks, the following 
condition is applied since it has a large value in the 
case of panning and motion scenes. 

MVC , PMVC  > Th_mvc    (18) 

, where MVC and PMVC are numbers of motion 
compensated blocks in the most recent P-picture and its 
previous P-picture, respectively. In order to exclude 
motion compensated blocks which are not real motion 
involved, only blocks which have motion vector size 
larger than threshold value Th_mv are counted in Eq. 
(18). We have also applied several conditions described 
in the following since above equation may also exclude 
dissolve in the panning/motion scenes. 

Motion scenes are characterized as large inter-
frame difference whereas panning scenes are 
characterized that most of all the motion vectors are in 
the same direction. Therefore the following conditions 
are used. 

Dn,Dn -1 > Th_bm     (19) 
Dn > Th_mm , |<mvx >| or  |<mvy >| > Th_am    (20) 
 
Eq. (19) corresponds to motion scenes where 
consecutive motion is detected using inter-frame 
difference. Eq. (20) corresponds to panning where 
frame average horizontal/vertical motion vectors are 
compared with threshold value. Therefore if either Eq. 
(19) or Eq. (20) along with Eq. (18) are satisfied, the 
frame is declared as panning/motion scenes. 
 
2.2.3 Wipe shot boundary determination 
A wipe is a scene transition where a new shot appears 
and at the same time current shot disappears changing 
their spatial positions. Although wipe in TV program 
are found mostly in TV news and may not be found in 
other programs like commercials and film, wipe tends 
to be recognized more easily than other scene changes 
due to its rather long transition duration and therefore it 
usually plays an important semantic role in the 
program. 

Several examples of wipe transitions are 
depicted in the Figure 2. Figure 2(a) shows most 
typical wipe where a new shot B translated to the right 
direction over the current shot A. Figure 2(b) is 
modified version of Figure 2(a) where shot B expands 
horizontally whereas shot A shrinks accordingly. 
Figure 2(c) and (d) are modifications of wipe model in 
Figure 2(d) where a new shot B expands over shot A in 
vertical direction. Figure 2(e) is a page-turn type wipe 
where a new shot B appears as if a current page A is 
turned.  
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Figure 2. Wipe models 
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Figure 3. Wipe model using inter-frame difference 
 
As can be seen from these patterns in Figure 2, it is 
difficult to use motion information for wipe 
determination since various kinds of motion models are 
required for corresponding wipe patterns. Although 
moving patterns are completely different depending on 
wipe models, spatial positions of two shots are always 
moving during wipe periods in any types of wipe and 
each shot before/after wipe period is usually still and 
stable unless large motion is involved in shots. 
Furthermore, moving speed of shots in wipe is slow 
and steady during wipe period. Therefore, when inter-
frame difference is used as determination measure, 
each wipe can be represented by the simple model as 
shown in Figure 3. Then a wipe is declared when the 
following equations are satisfied for those frames 
which are not designated as abrupt nor dissolve scene 
change. 

BW  > Th_bw , DW  > Th_dw, AW  > Th_aw      (21) 

Here BW, DW, and AW are number of frames which are 
recognized as periods before wipe, during wipe and 
after wipe, respectively. These values are obtained by: 
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where DL(k) and DH(k) are flags which show that k-th 
frame has low and high inter-frame difference Dk, 
respectively. These flags are determined by the 
following conditions. 

if  Dk > Th_wp   then DL(k)=0, DH(k)=1 

   else DL(k)=1, DH(k)=0  (23) 

 
 

 
(a) Flashlight/subliminal 

at n-th frame 
(b) Flashlight/subliminal  

at n-1-th frame 
 
Figure 4. Single flashlight/subliminal effect models 

 
 
2.2.4 Flashlight and subliminal effect detection 
A flashlight scene is spontaneous frame change due to 
flashlight in a shot. For example, in TV news sequence, 
a flashlight scene appears while an important person 
gives a speech in a press conference. Also a subliminal 
effect (simply subliminal, hereafter) may be inserted 
into TV programs or films with a certain intention. 
Since a flashlight frame and a subliminal frame are 
quite different from preceding and following frames, 
frames with flashlight/subliminal and after flashlight/ 
subliminal are often falsely detected as scene change. 
Luminance and chrominance distributions in flashlight/ 
subliminal frame are completely different from those in 
the previous frames. However, unlike shot boundary, 
these distributions in flashlight return to the previous 
states after one or a few frames. Therefore by 
investigating frames before and after flashlight scene, 
flashlight scene can be excluded from scene change 
points. Single flashlight model is depicted in Figure 4. 
For example, when n-th frame is flashlight scene, 
correlation between n-th and n-1-th is low whereas 
correlation between n+1 and n-1 is high as shown 
Figure 4(a). In the same way, especially consecutive 
flashlight scenes can be easily modeled by extending 
single flashlight model. We use chrominance histogram 
correlation as correlation measure in order to 
distinguish flashlight from other shot boundary. 
Therefore flashlight/ subliminal effect at n-th frame is 
detected when: 

ρ (n , n - 1) < Th_fl ,  ρ (n +1,  n -1) > Th_fh       (24) 
 
2.3 Evaluation results 
We applied the above mentioned shot boundary 
determination to TRECVID 2003 test data (totally 12 
sequences). All the parameters used in the above 
equations are determined through a 20 minutes TV 
sequence encoded by MPEG-1, not in TREC test data.  

Table 1 shows the results of shot boundary 
determination; recall (Re.) and precision (Pr.) for total, 
recall and precision for abrupt shot boundaries, and 
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recall, precision, frame-recall and frame-precision for 
gradual transition boundaries. These scores are 
calculated using TREC shot boundary evaluation 
program provided by NIST. As shown in Table 1, most 
of abrupt shot boundaries are successfully detected. 
However, in spite of incorporating flashlight exclusion 
algorithm, most of the false detections for abrupt shot 
boundaries are flashlights. In addition, sudden changes 
of brightness such as shining are falsely determined as 
abrupt shot boundaries. As for un-detection, the abrupt 
shot boundaries between fields are not detected since 
the test data is encoded in frame structures. Also the 
shot boundaries where the frame is only partly changed 
are not detected. 

As for gradual transitions, about half of the shot 
boundaries are detected in our algorithm. The cause of 
false detection is roughly categorized in two cases; one 
is that a scene is falsely determined as wipe or dissolve 
when a large object slowly comes into a frame, and the 
other case is when an object suddenly starts to move 
very fast from still mode. These false detections require 
more detailed observation of motion of the object. As 
for un-detection, many of wipe transitions cannot be 
determined. In addition, dissolve transitions between 
very similar shots in terms of color, texture, etc. are not 
detected. Therefore more detailed analysis is needed for 
enhancing the gradual transition detection accuracy, 
which corresponds to future challenge. 

As for computational cost, our method achieves 
very fast operation, about 24 times faster than real-time 
playback on the normal Windows PC with Pentium 4 
1.8GHz CPU, since all the processes are performed on 
compressed data domain. 
 

Table 1. Shot boundary determination results for 
TRECVID 2003 test sequences 

All Abrupt Gradual Sequence 
Re. Pr. Re. Pr. Re. Pr. F-Re. F-Pr.

19980203 0.758 0.786 0.928 0.830 0.479 0.672 0.590 0.524
19980222 0.846 0.812 0.961 0.855 0.495 0.625 0.404 0.624
19980224 0.800 0.844 0.952 0.867 0.458 0.750 0.440 0.508
19980412 0.815 0.810 0.973 0.850 0.416 0.633 0.514 0.626
19980425 0.776 0.785 0.942 0.810 0.505 0.716 0.593 0.533
19980515 0.826 0.832 0.957 0.879 0.541 0.689 0.491 0.576
19980531 0.873 0.842 0.974 0.868 0.537 0.716 0.542 0.595
19980619 0.839 0.868 0.984 0.915 0.472 0.681 0.538 0.540
19990303 1.000 0.684 1.000 1.000 0.000 0.000 - - 
19990308 0.960 0.857 0.960 1.000 0.000 0.000 - - 
20010614 1.000 0.470 1.000 1.000 0.000 0.000 - - 
20010702 1.000 0.937 1.000 1.000 0.000 0.000 - - 

 
 
 
2.4 Conclusion 
In this Section, firstly a preprocessing for shot 
boundary determination is described. By using motion 
vectors and DCT DC information, DC image in 1/64 of 

original coded sized has been obtained directly from 
MPEG bitstream for P- and B-pictures as well as I-
pictures. Shot boundary determination algorithm not 
only for abrupt scene change but also for gradual 
transitions is proposed. In our methods, statistics like 
histogram as well as motion vector from coded 
bitstream are used to adaptively detect various types of 
shot boundaries. In addition, exclusion algorithms for 
panning and flashlight/subliminal scenes have also 
been proposed. In the experiment around 95% of 
abrupt shot boundaries are successfully detected for the 
TRECVID test data. As for gradual transitions, about 
half of shot boundaries are detected. Since its process is 
very fast and only less than 5% of normal playback 
time is required, the proposed method well realizes 
efficient shot boundary determination used for higher 
level processing such as content base video analysis. 
 

3. STORY SEGMENTATION 
 
Our story segmentation methods and experiments are 
described in this section. As mentioned in Section 1, 
experiments based on two conditions, i.e., “ASR only” 
and “Audio/Video”, were conducted. Due to delays in 
the development of our audio/video feature extraction 
programs, we were only able to submit the “ASR only” 
results as our official submission. Therefore, the 
“Audio/Video” experiments were conducted after the 
official submission.  
 
3.1 Story segmentation based on ASR results 
For our “ASR only” experiments, we implemented a 
story segmentation method based on the TextTiling 
algorithm [15], where the similarity of adjacent text 
sequences are calculated, and story boundaries are 
drawn at points where similarity decreases. In our 
implementation of the TextTiling algorithm, we made a 
vector space model of ASR results per shot, and 
calculated the similarity of ASR results in adjacent 
shots. Each shot vector was constructed by calculating 
the TF*IDF value of all words occurring within a shot. 
Prior to this process, we removed all general 
stopwords, and applied Porter stemming.  
 The outline of the TextTiling algorithm is 
illustrated in Figure 5, where the vertical axis indicates 
the calculated similarity between documents (shots) at 
the time indicated by the horizontal axis. Similarity 
decrease points, i.e., candidates of story boundaries, are 
the points where similarity stops decreasing. A score 
for each candidate is calculated based on the “depth” of 
the decrease point. For example, in Figure 5, the score 
of point d0 is calculated by adding diff1(d0) and 
diff2(d0).  
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Figure 5. Outline of TextTiling algorithm 

 
 Since the amount of text information within a 
single shot is low, some deceiving similarity decrease 
points may occur due to the lack of essential words 
which describe the story of the regarding shot. In order 
to cope with this problem, we also implemented a 
document expansion method, based on Rocchio’s 
algorithm [16]. Essentially, this process adds 
information of words which do not occur within a shot.  
 Document expansion is conducted by the 
following procedures. First, a collection of documents 
similar to the regarding document is constructed by 
calculating the similarity between the regarding 
document and all other documents within the program, 
and extracting the top N documents based on similarity. 
Next, a score for each word is calculated by the 
following formula:  
 
 ∑
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where the vector of shot i is expressed as the following 
formula:  
 ),,,( 21 iniii wwwS K

r
=   (26) 

 
 All words are ranked based on the above 
score, and the top M words and their regarding scores 
are added to the original shot vector. However, words 
which occur in the original shot are not added in this 
process. The expanded shot vectors are then used to 
calculate similarities for the TextTiling algorithm.  
 
3.2 Story segmentation based on audio-video 
features  
For our “Audio/Video” story segmentation 
experiments, we focused on the development of a story 
segmentation algorithm based purely on content-
independent low-level features, instead of the widely 
popular and heuristic approach to detect significant 
“cues” of story boundaries, i.e., news anchor shots in 
broadcast news programs.  

 The general flow of our story segmentation 
process is as the following. First, the video is divided 
into individual shots. For this process, we used the 
TRECVID common shot boundaries. Next, low-level 
audio-video features are extracted from each shot. 
These features are used to generate a vector expression 
of each individual shot. Each shot vector is then input 
into a SVM-based story boundary determinator, which 
determines whether or not a story boundary occurs 
within the shot. A flowchart of the proposed method is 
illustrated in Figure 6.  
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Figure 6. Outline of story segmentation algorithm 
 
3.2.1 Audio-video feature extraction 
The low-level features extracted from each shot can be 
roughly divided into four types: audio, motion, color, 
and temporal related features.  
 The audio related features consist of the 
average RMS of the shot, average RMS of the first n 
frames of the shot, and the frequency of four audio 
classes (silence, speech, music, noise) per shot. The 
average RMS of the first n frames is extracted mainly 
to detect silent periods at the beginning of a shot, which 
are assumed to occur at story boundaries. For the 
following experiments, n was fixed to 10.  
 Frequency of audio class is extracted by 
classifying the audio of each frame based on an audio 
classification algorithm by Nakajima et al [17]. This 
algorithm classifies incoming MPEG audio into the 
previously mentioned four classes, by analyzing 
characteristics such as temporal density, and 
bandwidth/center frequency of subband energy on 
compressed domain. The frequency of each audio class 
is derived by calculating the number of class 
occurrences within a shot.  
 The motion of a shot is calculated based on 
motion vector features of the video. Motion vectors can 
be directly extracted from the P-frames of MPEG-
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encoded video. Total motion of the shot is obtained 
from the absolute sum of motion vector amplitudes. 
Motion intensity, which indicates the intuitional 
amount of motion in a shot, is defined in MPEG-7 
Visual [18].  
 The color layout features, also defined in 
MPEG-7 Visual, are extracted based on the algorithm 
of Sugano et al[19]. Simply said, the color layout 
features specify spatial distribution of colors within a 
frame. This information is extracted from the DC 
image, which corresponds to a (horizontally and 
vertically) downscaled version of the original image. 
For our method, the color layout features are extracted 
from DC images generated from the first, center, and 
last frame of the regarding shot. Extracting color layout 
features from these three frames is assumed to be 
useful to detect the stability of a shot. For example, the 
color layout features of a static shot, such as an anchor 
shot, are expected to be similar throughout the shot. On 
the contrary, color layouts within a dynamic shot are 
assumed to be of wide variance.  
 The temporal features are shot duration and 
shot density. Both of these features are also general 
low-level features which express important 
characteristics of a shot. For example, anchor shots are 
expected to be relatively longer than other types of 
shots, and the density of commercial shots are expected 
to be higher than other shots.  
 All of the above features are completely 
independent from the video content, and can be 
efficiently extracted from any video data.  
 
3.2.2 Story segmentation based on SVM  
Based on the audio-video features described in the 
previous section, each shot of the regarding video is 
expressed as a vector, where each element of the vector 
expresses the value of each audio-video feature 
described in the previous section. These “shot vectors” 
are used as input information for a classifier based on 
support vector machines (SVM)[20], which is a widely 
implemented and effective algorithm for classification. 
In the proposed method, SVM is utilized to 
discriminate shots which include a story boundary. 
Two methods are tested to define the input vector for 
the SVM-based classifier. One method is to simply use 
the shot vector as a representation of a single shot. To 
train the SVM based on this method, all shots that 
include a story boundary are labeled positive, and all 
other shots are labeled as negative. The resulting SVM 
will be able to discriminate shots with a story 
boundary, from all other shots in the test data. This 
method will be referred to as the “1-shot method''. 
 The other method is to use a single vector to 
represent a sequence of adjacent shots. This is 

accomplished simply by connecting each shot vector to 
generate a large vector which expresses the features 
extracted from all shots within the sequence. For 
example, if each shot vector is k-dimensional, the 
vector of a shot Sx can be expressed by the following 
formula: 
 
 ),,,( 21 xkxxx sssS K

r
=   (27) 

 
where sxm expresses the value of the m-th feature. The 
vector of a shot sequence consisting of two shots S1 and 
S2 is a (2*k)-dimensional vector, which can be 
expressed by the following formula:  
 
 ),,,,,( 2222111211 kk sssssseqS KK

r
=   (28) 

 
 In other words, the shot sequence vector is 
generated simply by concatenating the vectors of the 
two shots within the sequence.  
 In order to prepare training data for the SVM 
classifier for the shot sequence method, a shot sequence 
is labeled positive when the first shot of the sequence 
includes a story boundary. All other shot sequences are 
labeled negative. Figure 7 illustrates this labeling 
scheme of the shot sequence method.  
 

Story 
boundary1

t

Positive 
shot sequences

Negative 
shot sequences

Shot1 Shot2 Shot3 Shot4 Shot5 Shotn

Story 
boundary2

 
Figure 7. Outline of shot sequence labeling method 

 
 The hypothesis regarding the shot sequence 
method is that, while a single occurrence of a shot 
indicating a story boundary may be effective to detect 
story boundaries, this approach may also raise many 
false alarms, such as anchor shots which do not initiate 
a new story. The aim to increase the amount of utilized 
information from features of a single shot to plural 
shots, is to reduce story segmentation errors which may 
be caused by such false alarms, and discriminate 
distinct sequences of shots which occur at the 
beginning of a new story, which may be a better 
indicator of a story boundary.  
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3.3 Experiments  
In this section, we present the results of our story 
segmentation experiments. Note that the officially 
submitted results are not discussed here, due to errors 
in the results that became apparent after submission.  
 
3.3.1 ASR only experiments  
As mentioned in Section 3.1, there are mainly two 
parameters for document expansion: the number of 
documents to extract additional word information (N), 
and the number of words to add to each document (M). 
These parameters were set to 5, 10, 15, and 20. 
Precision, recall, and F-measure of all experiments are 
listed in Tables 2 to 4, respectively.  
 
Table 2. Precision of TRECVID story segmentation 

experiments (ASR only) 
 # of words (M) 

# of docs 5 10 15 20 
N=5 0.194 0.202 0.203 0.204 

10 0.190 0.201 0.205 0.205 
15 0.189 0.193 0.197 0.203 
20 0.186 0.194 0.198 0.199 

 
Table 3. Recall of TRECVID story segmentation 

experiments (ASR only) 
 # of words (M) 

# of docs 5 10 15 20 
N=5 0.309 0.320 0.322 0.323 

10 0.301 0.318 0.322 0.323 
15 0.300 0.307 0.313 0.322 
20 0.295 0.307 0.314 0.315 

 
Table 4. F-measure of TRECVID story 
segmentation experiments (ASR only) 

 # of words (M) 
# of docs 5 10 15 20 

N=5 0.238 0.248 0.249 0.250 
10 0.233 0.246 0.251 0.251 
15 0.232 0.237 0.242 0.249 
20 0.228 0.238 0.242 0.244 

  
Table 5. Results of TRECVID story segmentation 

experiments (Audio/Video) 
 Precision Recall F-measure

1-shot 0.545 0.551 0.548 
2-shot 0.554 0.560 0.557 

 
 Results in Tables 2 and 3 show that there is a 
small correlation between the number of additional 
words and the improvement of both precision and 
recall. On the contrary, the increase of documents to 
extract words for expansion causes the decrease of 
precision and recall. However, the difference between 
results of all parameter settings in these Tables are 

insignificant, as can be observed from the F-measure 
results in Table 4. Furthermore, the results themselves 
are generally low.  
 
3.3.2 Audio/Video experiments 
Next, we present the story segmentation experiment 
results.  
 In our experiments, we constructed a separate 
SVM model for ABC and CNN. All shots or shot 
sequences in the test data set are inputted to the SVM 
based story boundary determinator. The distance from 
the SVM hyperplane was used as the score for each 
input shot or shot sequence. All shots (shot sequences) 
are ranked based on this score, and the top K shots are 
extracted as story boundaries. Since the average 
number of story boundaries in the TREDCVID 
development data was 19.0 for ABC and 34.8 for CNN, 
we set the default number of computed story 
boundaries for this experiment to 19 for ABC, and 35 
for CNN.  
 Table 5 shows the precision, recall, and F-
measure of the audio/video experiments, for the 1-shot 
and shot sequence (2-shot) methods.  
 As clear from the results in Table 5, the results 
of the Audio/Video experiments are significantly 
higher than those of the ASR only experiments. These 
results indicate that audio/video features are more 
effective for story segmentation of news video.  
 Furthermore, the shot sequence (2-shot) 
method has shown better results than the single shot 
method. This indicates that utilizing information from 
two shots is effective for accurate story segmentation. 
 Moreover, comparison of the results in Table 
5 to the official results of other participants show that 
these results are competitive to other TRECVID 
participants, even though most of the approaches of 
other participants make use of high-level analysis of 
video, such as shot classification. This shows that our 
simple approach to use only low-level audio/video 
features to directly model story boundary occurrence is 
quite effective. Since our method only uses content-
independent features, we believe our method is easily 
applicable to various video content other than broadcast 
news.  
 
3.4 Conclusion 
We conducted two story segmentation experiments, 
based on the “ASR only” and “Audio/Video” 
conditions. Overall comparison of the two experiments 
shows that audio/video features are more effective than 
the ASR results to determine story boundaries. Future 
work within the story segmentation framework includes 
implementation of high-level audio/video features, and 
experiments on story labeling.  
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