2004 TRECVID Workshop

TRECVID Story Segmentation based on Content-Independent Audio-Video Features

Keiichiro Hoashi, Masaru Sugano, Masaki Naito, Kazunori Matsumoto, Fumiaki Sugaya, Yasuyuki Nakajima

KDDI R&D Laboratories, Inc.

Outline

- Introduction
- System description
 - Baseline story segmentation method
 - SVM-based segmentation w/ low-level features
 - System components:
 - Section-specific segmentation
 - Anchor shot segmentation
 - Post-filtering
- Experiment results
- Conclusion

Introduction

- Motivation
 - ODevelopment of a *generic* story segmentation algorithm applicable to non-news video contents
- Requirements
 - Outilize only low-level audio-video features which can be extracted from any video data
 - Restricted use of news-specific features (e.g., anchor shots)
 - Restricted use of text information (e.g., ASR results)
 - Main focus: Story segmentation based on "Audio+Video" experiment condition

Introduction (cont'd)

- However, content-specific features are necessary to achieve accurate segmentation
 - Content-specific components developed to complement weak points of baseline method

Highly accurate story segmentation achieved!

Overview: Experiment results

Figure 1. Recall, precision and F-measure of all "Audio+Video" TRECVID submissions

Outperformed all non-KDDI runs!

System Description

System outline

"Baseline" component

Baseline story segmentation

Procedures:

- Shot segmentation
 - Merged TRECVID common shot boundaries with shot segmentation results of IBM VideoAnnEx tool
 - Applied "curtain-type" wipe detection method
- Feature extraction
 - Extracts low-level audio-video features from each shot, and generates "shot vectors"
- SVM-based story segmentation
 - Discriminates shots which contain story boundaries

Extracted audio-video features

- Audio
 - Average RMS
 - Avg RMS of first n frames
 - Frequency of audio class (silence, speech, music, noise)
 - Details in Reference [4]
- Motion
 - Horizontal motion
 - Vertical motion
 - O Total motion
 - Motion intensity

- Color
 - Color layout of first, middle, and last frame (6*Y, 3*Cb, 3*Cr)
 - Color layout distance between first, middle and last frames
- Temporal
 - Shot duration
 - Shot density
- Total number of elements: 51

51-dimensional "shot vector"

SVM-based story segmentation

- Apply SVM to discriminate shots w/ story boundary
- Training phase
 - Shots which contain story boundary
 Positive
 - O All other shots
 Negative

- Evaluation phase
 - OExtract N shots based on distance from SVM hyperplane
 - $\bigcirc N$ = Average number of stories in ABC, CNN (Baseline)
 - $\bigcirc N = \text{Average number of stories x 1.5 (Extended baseline)}$
 - Set story boundary at beginning of each extracted shot

Problems of baseline method

- Although baseline results were satisfactory, several weak points were observed...
- Poor recall in various "sections"
 - e.g., Top Stories, Headline Sports of CNN
 - Cause: <u>Different characteristics</u> compared to general content
 - No anchor shots, background music, etc.
 - SVM unable to adapt to various features
- Impossible to detect multiple story boundaries that occur within a single shot
 - Baseline can only set one story boundary per shot

Additional system components

- Section-specialized segmentation
 - Objective:
 - Improvement of recall in specific sections which have different characteristics
- Anchor shot segmentation
 - Objective:
 - Detection of multiple story boundaries which occur within a single shot
- Post-filter
 - Objective:
 - Improvement of precision

Component 1: Section-specialized segmentation

Section-specialized segmentation

- General approach:
 - Construct SVM specialized for story segmentation within specified sections
- Procedures:
 - Section extraction
 - Extraction based on "jingles", i.e., audiovideo sequences which initiate sections
 - Section-specialized SVM
 - Construct SVM specialized to conduct story segmentation on extracted sections

Section extraction

- Automatic detection of "jingles" based on reference audio signals
 - O Based on "Time-series active search" algorithm [Kashino]
- Extract sections based on position of extracted jingles

Apply section-specialized SVM to set story boundaries within each extracted section

Component 2: Anchor shot segmentation

Baseline **Anchor shot** Input video segmentation anchor shot Section-specialized shot segmentation extraction segmentation anchor shot section extraction segmentation feature extraction based on "silence" Post-filter Filter candidates section-specialized SVM-based story boundary w/o silent segments **SVM** addition story segmentation and anchor shots

Anchor shot segmentation

- General approach:
 - Extract shots which are expected to contain multiple stories (anchor shots), and insert additional boundaries
- Procedures:
 - O Anchor shot extraction
 - Construct SVM to discriminate anchor shots based on audio-video features
 - O Extraction of "silent sections"
 - Two methods:
 - Audio classification results
 - HMM-based non-speech detector
 - Story boundary addition
 - Insert story boundaries at detected silence sections

anchor shot extraction

anchor shot segmentation based on "silence"

story boundary addition

Component 3: Post-filter

Post-filter

- Objective:
 - Improvement of story segmentation precision
 - Objective of previous components is improvement of recall
- Procedure:
 - Omission of questionable story boundary candidates based on:
 - Silence section extraction
 - Hypothesis: Story transitions are accompanied with significant pause = silence
 - Anchor shot detection
 - Hypothesis: Story boundaries accompanied with non-anchor shots are probably mistaken
 - Utilizes features used in in previous components

Filter candidates w/o silent segments and anchor shots

Experiment Results

Description of KDDI Audio+Video runs

Table 1. Summary of KDDI "Audio+Video" story segmentation runs

Run ID	Baseline	SS-S	Anchor SS	Post-filter
kddi_ss_base1	Base			
kddi_ss_c+k1	Base	✓		
kddi_ss_all1	Base	✓	Audio Class	
kddi_ss_all1_pfil	Base	✓	Audio Class	Audio Class
kddi_ss_all2_pfil	Ext	✓	Audio Class	Audio Class
kddi_ss_all1nsp07_pfil	Base	✓	НММ	HMM
kddi_ss_all2nsp07_pfil	Ext	✓	НММ	HMM

Evaluation results

Table 2. Results of KDDI "Audio+Video" story segmentation runs

Run ID	Recall	Precision	F-measure
kddi_ss_base1	0.640	0.622	0.631
kddi_ss_c+k1	0.707	0.637	0.670
kddi_ss_all1	0.741	0.630	0.681
kddi_ss_all1_pfil	0.710	0.675	0.692
kddi_ss_all2_pfil	0.756	0.567	0.648
kddi_ss_all1nsp07_pfil	0.738	0.642	0.687
kddi_ss_all2nsp07_pfil	0.786	0.531	0.634

Contribution of each system component

- Section-specialized segmentation (SS-S)
 - O Baseline Baseline + SS-S
 - Recall: +0.123 (0.605 0.728)
 - Precision: +0.026 (0.596 0.625)
 - Comparison based only on CNN data
 - Specific sections could not be defined for ABC...
- Anchor shot segmentation (ASS)
 - O Baseline + SS-S Baseline + SS-S + ASS:
 - Recall: +0.034 (0.707 0.741)
 - Precision: -0.007 (0.637 0.630)
- Post-filter (PF)
 - O Baseline + SS-S + ASS Base + SS-S + ASS +PF
 - Recall: -0.031 (0.741 0.710)
 - Precision: +0.045 (0.630 0.675)

Summary of system component contributions

- Section-specialized segmentation
 - Highly effective (if sections are definable and extractable)
- Anchor shot segmentation
 - Effective for recall improvement
 - Decrease of precision was not as significant as predicted
- Post-filter
 - O Precision improved, recall decreased
 - Overall improvement (F-measure) was minimal

Conclusion

- Proposed SVM-based story segmentation method based on low-level audio-video features
 - Applicable to video of any domain
 - Significantly efficient compared to conventional methods which utilize sophisticated feature extraction
 - OAchieves highly accurate story segmentation!
- Various content-specific components also effective
 - Generality of audio-video features enabled easy implementation of system components

Future work

- Segmentation on video w/ insufficient training
 - Recall was poor on video files recorded in environment that did not appear in development data

Normal studio setting (Recall: approx. 80%)

19981216~18_ABCa.mpg (Recall: 13~36%)

- Automatic extraction of reference signals for jingle detection
 - Enables application of section-specialized segmentation for various news programs

