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Abstract

This paper describes the contribution of the Center for Computing
Technologies (TZI), University of Bremen, Germany, to the shot detection
task of the TREC 2004 video analysis track (TRECVID). The approach
uses RGB histogram values which are calculated within a five frames width
window and the edge change ratio between consecutive frames as well as
frames at a distance of 10. Both methods are used to detect hard cut
candidates. To confirm or reject the hard cut candidates a block-based
motion analysis is used. Gradual transitions are also detected using RGB
histogram values together with a finite state machine.

1 Introduction

The Center for Computing Technologies (TZI), University of Bremen, Germany,
participated in the shot detection task of the video analysis track. In addition
to 2003, where color histograms were also used, we calculate here not only
differences between consecutive frames but also between pairs of frames with
a distance of up to five frames. We added also a flashlight detection to avoid
false alarms due to flashlights and we integrated the edge change ratio as an
additional indicator for hard cuts. To avoid false alarms concerning hard cuts
due to camera motion we integrated a block-based motion analysis to confirm
or reject hard cuts detected by the color histogram or the edge change ratio
method. For detecting gradual transitions we use a finite state machine.

2 Shot detection approach

This section introduces our 2004 shot detection approach. Section 2.1 describes
the values calculated from the color histograms of six consecutive frames. In
section 2.1.1 we define a condition, how false alarms caused by flashlight can
be avoided. Section 2.1.2 describes the shot detection based on the RGB his-
togram values and the finite state machine. Hard cuts that start or end with a
black frame are classified as fade in or fade out effects (sec. 2.1.3). Section 2.2
introduces the hard cut detection based on the edge change ratio (ECR). Sec-
tion 2.3 shows how hard cut candidates are confirmed or rejected using motion
information.



Figure 1: Plot of monitored values in case of a cut.

2.1 RGB histogramm

RGB histogram values are used to detect hard cut candidates and gradual cuts.
First, we compute the average values for each color channel in each frame and
compare these values in a window of five frames width, i.e. the actual frame is
compared with frames that are in a distance of one up to five frames.

∆RGB(n)k = |Rn −Rn+k|+ |Gn −Gn+k|+ |Bn −Bn+k|. (1)

where Rn, Gn, Bn is the average R, G and B value of frame n and k = 1, . . . , 5
specifies the absolute RGB difference between the compared frames. Fig. 1 and
2 show plots of monitored values for the five frame distances in case of a hard
cut and a gradual transition, respectively.

Then we compute the sum of the five difference values:

Dif Sum(n) =
5∑

k=1

∆RGB(n)k (2)

In addition, we compute the sum of the squared differences of consecutive
value pairs (with wrap around):

Sqr Dif Sum(n) = (∆RGB(n)1 −∆RGB(n)2)2 +
(∆RGB(n)2 −∆RGB(n)3)2 +
(∆RGB(n)3 −∆RGB(n)4)2 +
(∆RGB(n)4 −∆RGB(n)5)2 +
(∆RGB(n)5 −∆RGB(n)1)2 (3)



Figure 2: Plot of monitored values in case of a gradual transition.

2.1.1 Flashlight detection

To detect flashlights with a duration of maximum three frames we use the five
absolute difference values ∆RGB(n)1, . . . ,∆RGB(n)5 and compare them to the
thresholds th flash low and th flash high. The threshold values were varied
as listed in table 1. If the following condition holds, a flashlight is detected:

∆RGB(n)1 < th flash low ∧
∆RGB(n)5 < th flash low ∧
(∆RGB(n)2 > th flash high ∨
∆RGB(n)3 > th flash high ∨
∆RGB(n)4 > th flash high) (4)

The frames that are illuminated due to the flashlight are skipped.

2.1.2 Shot boundary detection

A hard cut candidate is detected if the following condition holds:

∆RGB(n)1 ≥ thRGB ∧∆RGB(n)5 ≥ thRGB (5)

Decreasing the threshold thRGB results in more hard cut candidates. There-
fore, decreasing thRGB increases the recall but decreases the precision of the
detection of hard cuts. The hard cut candidates are then tested via block based
motion analysis and are either confirmed, so that a hard cut is detected or
rejected.



Figure 3: Finite state machine

For detecting gradual transitions and further hard cut candidates we use a
finite state machine (FSM) with eight states comparable to that proposed in
[Amir et al., 2003]. The FSM is illustrated in fig. 3. The five RGB mean differ-
ence thresholds (th0−1, . . . , th0−5) control the conditions for changing the states.
In case of a hard cut the absolute difference values ∆RGB(n)1, . . . ,∆RGB(n)5
are significantly higher. For a gradual transition they change more slightly. De-
creasing the five thresholds increases the recall but decreases the precision of
the shot boundary detection.

The conditions for changing the states depend on combinations of the fol-
lowing comparisons of values against thresholds:

• c1 : ∆RGB(n)1 ≥ th0−1

• c2 : ∆RGB(n)2 ≥ th0−2

• c3 : ∆RGB(n)3 ≥ th0−3

• c4 : ∆RGB(n)4 ≥ th0−4

• c5 : ∆RGB(n)5 ≥ th0−5

• c6 : Sqr Dif Sum(n) > thsqrDifHigh

• c7 : Sqr Dif Sum(n) ≤ thsqrDifLow ∧Dif Sum(n) ≤ 300

• c8 : Dif Sum(n) ≤ thDifSum with thDifSum ≤ 300



When changing from state 5 or 6 to the initial state a hard cut candidate
is detected, which is then tested using the block-based motion analysis method
(section 2.3).

When changing from state 6 to state 7 we save the previous frame as the
possible beginning of a gradual transition. During the gradual transition the
FSM stays in state 7. There are two possibilities to change from state 7 to
the initial state and to detect the end of a gradual transition: First, when the
absolute difference values do not have a significant variance, it is assumed that
the frames belong to the same shot and the gradual transition is over. This is
tested by the condition c7 = Sqr Dif Sum(n) ≤ thsqrDifLow ∧Dif Sum(n) ≤
300. So increasing the parameter thsqrDifLow will decrease the average length
of the detected gradual transitions. This parameter only affects the precision.
Second, when the condition c8 = Dif Sum(n) ≤ thDifSum with thDifSum ≤
300 is fulfilled, then one expects having frames that belong to the same shot.
Increasing thDifSum leads to shorter gradual shots and therefore only affects
precision. Otherwise no transition is detected. In both cases the detection
process starts again from the beginning (initial state). Hard cuts which were
detected during the gradual transition are rejected.

2.1.3 Fade in and fade out effects

Having detected a hard cut we test for black frames to find fade in and fade
out effects. If the previous frame is black we declare the last detected shot as a
gradual one and adapt the post frame (fade out). If the post frame is black we
mark this frame and declare the next detected shot as a gradual one with the
marked black frame as the pre frame (fade in).

2.2 Edge change ratio

This technique relies on the fact that the edges of the objects within the frames
would definitely change across a boundary. In other words, temporal visual
discontinuity always comes with structural discontinuity [Lienhart, 2001]. Ex-
ploiting the above fact, the percentage of edges that enter and exit between the
two frames is computed.

The Edge Change Ratio ECR(n, k), between the frames n − k and n is
calculated as shown below[Lienhart, 2001],

ECR(n, k) = max(
Xin

n

σn
,
Xout

n−k

σn−k
) (6)

where, σn is the number of edge pixels in the frame n, and Xin
n and Xout

n−k

are the entering and exiting edge pixels in frames n and n− k respectively.
The edge pixels in one image that have edge pixels very close by (around 6

pixels) in the second image are not regarded as entering or exiting edge pixels to
compensate for motion [Lienhart, 2001]. The technique was implemented based
on [Lienhart, 2001]. The algorithm is as follows:



1. Convert frames n− k and n to grayscale.

2. Perform Canny edge detection on these frames [Canny, 1986].

3. Count the number of edge pixels: σn and σn−k

4. Dilate the edges and invert the images.

5. Perform AND operation between the edge-image (frame n− k) from step
2 and the output image (frame n) from step 4. Also between edge-image
(frame n) from step 2 and the output image (frame n− k) from step 4.

6. Count the number of entering and exiting edge pixels in the images from
step 5 to obtain Xin

n and Xout
n−k

7. Calculate the ECR(n, k) = max(Xin
n

σn
,

Xout
n−k

σn−k
)

With k = 1 we obtain the ECR for consecutive frames n, n− 1. During the
shot boundary detection we also use the ECR with k = 10, i.e. for frames at a
distance of 10.

To detect hard cuts, two values are calculated: First, the near far ratio that
describes the ratio between the ECR between the current and the next frame
(near ECR) and the ECR between the current and the 10th frame (far ECR):

rnearfar(n) =
ECR(n, 10)
ECR(n, 1)

(7)

Second, we calculate the far last-far ratio which describes the ratio between
the current far ECR and the previous far ECR values:

rfarlastfar(n) =
ECR(n, 10)

ECR(n− 1, 10)
(8)

If rfarlastfar(n) > 2.0 ∨ (rfarlastfar(n) > thECRfarlastfar
∧ rnearfar(n) >

thECRnearfar
) a hard cut candidate is detected, which is tested via block-based

motion analysis and either is confirmed or rejected. Decreasing these thresholds
leads to more hard cut candidates and therefore increases recall but decreases
precision.

The test via block-based motion analysis is omitted if rnearfar(n) > 5.0,
because this is definitely due to a hard cut.

Fig. 4 shows a plot of monitored ECR values in case of a hard cut.

2.3 Block-based motion analysis

Hard cut candidates are tested via a block-based motion analysis for being
confirmed or rejected. We compute a motion vector field and sort the vectors
into 12 bins, each representing a direction interval in 2D covering 30◦. If the
vectors are spread over all bin (i.e. there are no real peaks) a hard cut is
confirmed.



Figure 4: Plot of monitored values in case of a cut.

3 Results

Table 1 lists the parameter settings for each of the 8 runs submitted.
Table 2 lists the results measured by precision and recall for each run.

Acknowledgement
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Parameter Run 1 Run 2 Run 3 Run 4
th flash low 12 10 10 10
th flash high 20 20 30 30
RGB mean difference
th0−1 9 9 11 8
th0−2 10 11 11 10
th0−3 12 12 12 14
th0−4 14 14 14 16
th0−5 14 18 14 18
thsqrDifLow 20 20 30 40
thsqrDifHigh 3000 1000 2000 1000
thDifSum 20 20 30 40
thRGB 35 30 45 35
thECRnearfar

1.80 1.70 1.70 1.70
thECRfarlastfar

1.50 1.40 1.45 1.50

Parameter Run 5 Run 6 Run 7 Run 8
th flash low 10 10 10 10
th flash high 20 30 30 18
RGB mean difference
th0−1 8 12 8 7
th0−2 10 12 12 10
th0−3 14 12 20 15
th0−4 16 12 30 20
th0−5 18 12 40 30
thsqrDifLow 20 20 150 60
thsqrDifHigh 3000 1000 8000 10000
thDifSum 20 20 40 30
thRGB 30 40 50 60
thECRnearfar

1.90 1.80 1.85 1.70
thECRfarlastfar

1.50 1.50 1.60 1.45

Table 1: Parameter settings.



All Cuts Gradual
Run Recall Prec. Recall Prec. Recall Prec. Frame-R. Frame-P.

1 0.719 0.634 0.896 0.636 0.347 0.621 0.506 0.619
2 0.736 0.615 0.895 0.620 0.401 0.595 0.531 0.637
3 0.664 0.642 0.836 0.650 0.302 0.601 0.491 0.729
4 0.742 0.610 0.906 0.614 0.394 0.592 0.501 0.799
5 0.725 0.626 0.895 0.628 0.367 0.619 0.512 0.630
6 0.732 0.647 0.893 0.654 0.394 0.617 0.545 0.637
7 0.655 0.639 0.853 0.632 0.236 0.698 0.439 0.820
8 0.704 0.632 0.889 0.625 0.313 0.674 0.455 0.858

Table 2: Evaluation results.


