
The PYTHY Summarization System: Microsoft Research at DUC 2007

Kristina Toutanova, Chris Brockett, Michael Gamon,
Jagadeesh Jagarlamudi†, Hisami Suzuki and Lucy Vanderwende

Natural Language Processing Group
Microsoft Research

Redmond, WA 98052

†Multilingual Systems
Microsoft Research Laboratory

Bangalore, India 560080

{kristout,chrisbkt,mgamon,jags,hisamis,lucyv}@microsoft.com

Abstract

PYTHY is a trainable extractive summarization
engine that learns a log-linear sentence rank-
ing model by maximizing three metrics of sen-
tence goodness: two of the metrics are based on
ROUGE scores against model summaries and
one is based on Semantic Content Unit (SCU)
weights associated with sentences selected by
past peers that were obtained during the Pyra-
mid evaluations. In addition to sentences from
the document set, our system considers sim-
plified sentences for inclusion in the generated
summaries. The feature weights of the model
are optimized on the DUC 2005 data, with the
final feature set for the submitted system be-
ing determined byROUGE-2scores against the
DUC 2006 model summaries. For the DUC
update task, the model was augmented with a
novelty detection classifier.

1 Introduction

Over the past several years, the Document Understand-
ing Conferences (DUCs) have enabled the research com-
munity to access a vital and growing body of data rele-
vant to multi-document summarization tasks. These data
consist not only of the primary DUC document collec-
tions and the associated manual summaries, but also data
created though collaborative efforts by DUC participants
such as the Pyramid annotations (Passoneau et al., 2005)
and the SCU-marked corpus produced at the University
of Ottawa from the results of the Pyramid evaluations in
2005 and 2006 (Copeck et al., 2006).

Part of the motivation of the Natural Language
Processing Group at Microsoft Research in participating
in DUC 2007 has been to investigate ways in which this
important body of data might be leveraged to model ex-
tractive summarization. To this end, we built PYTHY

(peer system 29), a summarization engine that allows us
to utilize both the manual summaries and the Pyramid
annotations available from previous years in training an
extractive summarization system.

Given a set of documents and a topic description,
PYTHY generates a summary of a specified length that
maximizes the score of the summary. The scoring func-
tion is learned by fitting weights for a set of feature func-
tions of sentences in the document set and is trained to
optimize a sentence pair-wise ranking criterion. The scor-
ing function is further adapted to apply tosummaries
rather than sentences and to take into account redundancy
among sentences.

In Section 2 below we give an overview of the PYTHY

system. In Section 3 we evaluate the contribution of dif-
ferent features and modeling choices made. Section 4
provides a short account of our effort to adapt PYTHY to
the DUC 2007 update summarization task. Finally we
conclude with a summary and discussion of our results in
DUC 2007, and look ahead to future work.

2 The PYTHY System

PYTHY comprises a preprocessing component that sup-
plies heuristically simplified sentences; a model for scor-
ing sentences and summaries; and a search component to
find the best summary. These are described in turn in the
subsections below.

2.1 Sentence simplification heuristics

PYTHY includes a heuristically driven sentence simpli-
fication component that extends that in our DUC2006
system (Vanderwende et al., 2006). The basic princi-
ple remains the same: provide many useful sentenceal-
ternativesfor the extractive summarizer to choose from,
rather than deterministically shorten sentences before or
after sentence selection. In 2007, the PYTHY preproces-
sor generates multiple simplified candidates per sentence,
and deploys an expanded set of simplification operations.

In simplification, syntactic units output by a broad-
coverage English parser (Ringger et al., 2004) are elimi-
nated from the parse tree when the node matches heuris-
tically determined patterns. (See (Vanderwende et al.,
2006) for details of these patterns.) Since producing
every combination of candidates with these patterns is
likely to result in an explosion of simplified sentences,
we adopt a two-step approach. First, nodes in the parse
tree are tagged when appropriate with one of four levels
of “deletability”, ranked as follows:

Level 1: Adverbial phrasal modifiers: Adverbial and
prepositional phrase modifiers (manner and time ex-
pressions)

Level 2: Adnominal modifiers: Noun appositives and
nonrestrictive relative clauses

Level 3: Adverbial clausal modifiers: Gerundive clauses
and past participials (sentence initial or preceded by
a comma)

Level 4: Intra-sentential attribution: e.g.,X said that...;
...,X reported Tuesday

In the second step, the tagged nodes are deleted, with
the following constraints: (1) all nodes assigned the same
level of “deletability” are removed simultaneously, and
(2) cross-level deletion is cumulative, i.e., removal of
lower ranked nodes requires simultaneous removal of any
higher ranked nodes that are also present in the sentence.

The second condition ensures that the following sen-
tence, for example, produces just two simplified candi-
dates, after deleting the tagged nodes:

[According to statistics from the Census Bu-
reau and the Bureau of Indian Affairs,]Level1

there are 1.43 million Indians [living on or
near reservations.]Level3

• there are 1.43 million Indians living on or
near reservations(Applying Level 1 pat-
tern)

• there are 1.43 million Indians.(Applying
Level 1 and 3 patterns)

The maximum number of simplified candidates gener-
ated per sentence is thus limited to 4. Additional candi-
dates are created by splitting coordinated sentences into
their individual conjuncts in a separate algorithmic path,
but conjuncts do not currently go through further simpli-
fication (via deletion) operations.

Application of this sentence simplification algorithm to
DUC 07 data affected 61% of all sentences in the original
document clusters, yielding 1.38 candidates per sentence
on average. Its effect is extensive in that almost 60% of
all extracted sentences in our summaries are the product

of the sentence simplification component. Simplification
impacts Rouge scores positively under PYTHY , as seen in
Section 3.

2.2 Sentence-level features in PYTHY

Our sentence features apply to sentences in the docu-
ments of the given clusters as well as to sentences which
were derived from the original ones through simplifica-
tion. When we discuss sentence features below, we will
note any aspects which are specific to the treatment of
sentence simplifications.

In the discussion below, we denote a sentence bys

and its sequence of words byw1, w2, . . . , wn. A sub-
sequence of the words in the sentence are judged to be
content words and are denoted byc1, c2, . . . , cm. (We
employ an extensive stop word list, also used in previous
submissions, to determine the content words.) We denote
the relative frequency ofx by p̂(x). The exact collection
of elements that this value is computed over are specified
below for each feature.

The learned score for sentences is a linear function of
the feature values:

Score(s) =
∑

k=1...K

wkfk(s)

All features are real-valued. The features fall into sev-
eral natural groups:

• SumFocus features, including scores similar to those
employed in SumBasic (Nenkova et al., 2006) and
SumFocus (used for our 2006 submission (Vander-
wende et al., 2006)). These features are defined as
follows: SumClusterFrequency(s)=

∑
i=1...m p̂(ci).

The relative frequency is computed over content
words in the cluster. The simplified sentences
are not included in the cluster for the purpose of
computing relative frequency estimates. TheSum-
ClusterFrequency feature is the only feature used
in SumBasic. The topic frequency feature is as
follows: SumTopicFrequency(s)=

∑
i=1...m p̂T (ci).

Here the relative frequencŷpT (ci) is computed over
the topic description.

• Other content word unigram frequency features:
SumClusterHeadlineFrequency, which is a sum of
the frequency of the content words in the collection
of headlines in the cluster, andSumDocumentFre-
quency, which is a sum of the frequency of content
words in the document (as opposed to the cluster).

• Sentence length features: binary features that fire if
the length of the sentence is less than a given length
(we used two features, for lengths five and ten).

• Sentence position features:SumDocumentStartFre-
quency and SumClusterStartFrequency, which are

sums of the frequencies of content words in the col-
lection of the first 100 words from the document and
all documents in the cluster; a real-valued position
feature; and binary features that fire if the position is
less than a given value (we used five and ten).

• Beyond unigrams (bigrams, skip bigrams and
multi-word expressions): SumClusterBigramFre-
quency, SumClusterMWEFrequency, SumCluster-
SkipBigramFrequency, and SumTopicSkipBigram-
Frequency. Bigrams are defined as consecutive con-
tent words. Multi-word expressions are named en-
tities and other collocations determined by a rule-
based grammar component (Ringger et al., 2004)
and a lexicon. Skip bigrams are content word bi-
grams that occur with at most two intervening con-
tent words.

• Features of all tokens (rather than content words
only): SumTopicTokenFrequency and SumCluster-
TokenBigramFrequency; these features are sums of
relative frequency estimates for all tokens, including
stop words.

• Features for simplified sentences: a binary feature
firing if a sentence is a simplification, and a real-
valued feature that indicates the ratio of the lengths
of the simplified and original sentences.

• A full sentence feature: a binary feature that fires
if the sentence has a verb (detected using dictionary
lookup).

• An idf feature: a feature that indicates the
sum of the inverse document frequencies of the
content words in the sentences in the clus-
ter. More formally, this feature is defined
as follows:

∑
i=1...m −log(numSent(ci)), where

numSent(ci) is the number of sentences in the clus-
ter in which the content wordci occurs.

Length, frequency, idf, and/or position features have
been used previously by other trainable summarization
systems e.g. (Kupiec et al., 1995; Fisher and Roark,
2006; Yih et al., 2007).

Because our system is trained to rank sentences but the
task is to choose a summary of a given length, we have
a mismatch between training and testing conditions. To
alleviate the problem, we use a modified version of some
features in training to prevent longer sentences from al-
ways being preferred to shorter ones. For example, if
the SumClusterFrequency feature has a positive weight,
we would generally expect that longer sentences will re-
ceive higher scores. Therefore in training we redefine all
features that are represented as a sum of per-word scores
into a normalized sum, as follows:f ′(s) = f(s)

numWords(s) .

During runtime search we do not normalize the feature
values for sentence length because the search algorithm
takes into account the summary length constraint and we
only need to compare summaries of the same length. In
future work we would like to explore more principled so-
lutions which learn to rank summaries.

2.3 Pair-wise ranking training criteria

To learn weights for the features we need to specify a
training criterion. As noted in the introduction, we used
annotated data from past DUC competitions to derive
several goodness metrics for sentences. Each goodness
metric lets us define a training criterion.

Each goodness metric of sentences specifies a set of
preferences for sentence pairs, where one sentence in
judged “better” than the other. The corresponding learn-
ing criterion seeks to assign higher scores to the “better”
sentences. More formally, suppose that a goodness metric
asserts a set of preferences for sentences:{ij : si > sj}.
Then our training criterion (objective) derived from this
metric is as follows:

L(D) =
∑

si>sj

log(
e
P

k
wkfk(si)

e
P

k
wkfk(si) + e

P
k

wkfk(sj)
)

The summation is over all comparable sentence pairs.
This objective can be seen as learning to maximize the
probability of choosing the better sentence from each pair
of comparable sentences. A similar training objective has
been used for ranking in text classification (Dekel et al.,
2004) and information retrieval (Burges et al., 2005). In
addition to this log-likelihood we add a quadratic regu-
larization penalty on the model parameters.

To learn a model that uses several goodness met-
rics simultaneously, we combine the log-likelihood terms
corresponding to each metric as follows: If the log-
likelihood of metricMl is LMl

(D), we define a com-
bined criterion as follows:L(D) =

∑
l LMl

(D). This
can be seen as maximizing the probability that we choose
the “better” sentences from each comparable pair accord-
ing to all criteria, assuming that we make the choices in-
dependently. It could be useful to fit separate weighting
factors for each criterion.

In summarization we have multiple evaluation mea-
sures for summaries: linguistic quality, content respon-
siveness, Pyramids,ROUGE (Lin, 2004) scores, etc.
Combining several criteria in training as we do is a way
to address the requirement to score well across multiple
evaluations.

Below we describe the three different goodness met-
rics we used. Note that the set of preferences each metric
specified need not be complete (it could be a partial or-
der). Thus different metrics give rise to a different num-

ber of comparable sentence pairs. Therefore, if compu-
tational resources are an issue, reducing the number of
comparable pairs may be of interest and if the training set
is very small, increasing that number may be desirable.

2.3.1 ROUGE oracle metric

The idea of this metric is to first select the best possible
summary according toROUGE from the set of sentences
in the cluster and their simplified versions. All sentences
in this ”oracle” summary are judged to be “better” than all
sentences not in the summary according to this metric.

An oracle summary for a cluster and a topic is defined
as the summary that has the highest average ofROUGE-2
andROUGE-SU4scores with respect to the model sum-
maries. Since finding such an oracle summary presents
a hard search problem, we used a greedy search on sen-
tences for which we defined the following per-sentence
scores:

w(s) =
1

Rank(s,R2)
+

1

Rank(s,RSU4)

HereRank(s,R2) andRank(s,RSU4) denote the ranks
of the sentence according to its sentence-levelROUGE-2
and ROUGE-SU4scores. During search, sentences that
had cosine similarity higher than a specified threshold
vis-a-vis the already chosen sentences were discarded, to
avoid redundancy.

2.3.2 Pyramid-derived metric

From previous years (DUC05 and DUC06), we have
SCU annotations for some of the sentences proposed by
peers. The University of Ottawa (Copeck et al., 2006) has
organized the data such that for some of the sentences in
the original document collection, a list of corresponding
content units is known. For each content unit, a weight is
also known from the Pyramid annotations. Thus we can
define the score of a sentence to be the sum of weights
of all content units present in the sentence. We further
normalize this score to define the goodness of a sentence
according to this metric:

w(s) =
1

numWords(s)

∑

c∈SCU(s)

weight(c)

This metric asserts that for every sentence pair where
both sentences have been annotated with zero or more
content units,si > sj if and only if w(si) > w(sj).
Sentences that have not been selected by any peers do
not participate in any preference relations. Note that our
simplified sentences do not have any content unit anno-
tations associated with them. We therefore assume that
sentence simplifications contain all of the content units
of the original un-simplified sentences for the definition
of this metric.

2.3.3 Model Frequency Metrics
These are two metrics based on unigram and skip bi-

gram frequency of words in the model summaries.
The unigram metric defines the goodness of a sen-

tence as follows:w(s) =
∑

i=1...m p̂models(ci). In other
words, this is similar to theSumClusterFrequency value
but the relative frequencies are computed over model
summaries. The sum is over content words only. Note
that we do not normalize for sentence length, which could
have been advantageous. The bigram measure of good-
ness is similar, but instead of unigram frequency it looks
at the sum of frequencies of skip content word bigrams in
the model summaries. This is analogous to ourSumClus-
terSkipBigramFrequency feature but is computed with re-
spect using frequency in the model summaries. These
two metrics aim to imitateROUGE-1 and ROUGE-SU4.
Each metric asserts that a sentencesi is “better” than sen-
tencesj if w(si)-w(sj)> C. The constantC here is a
manually selected threshold which we chose by rough in-
spection, so that we do not generate too many sentence
pairs. The thresholds used were0.08 for unigram fre-
quency and0.018 for skip bigram frequency. In the ex-
periments section below, we will see that a large number
of training instances are generated, even at these thresh-
old settings.

2.4 Dynamic sentence scoring

The system described so far assigns scores to sentences.
When we generate a summary, we also need to deal with
the problem of repetition of information. The problem is
especially important for multi-document summarization
and in a system such as ours, which considers multiple
simplifications of the same sentence as candidates.

Our approach to modeling redundancy is similar in
spirit to the SumBasic approach (Nenkova et al., 2006).
We define a dynamic sentence score, which is the score of
a sentence as a continuation of a given partial summary:
Score(s|prevS), whereprevS denotes a set of sentences
in a summary prefix. The score of a complete summary
consisting of sentencess1, s2, . . . , sp is defined as:

Score(s1 . . . sp) =
∑

i=1...p

Score(si|s1 . . . si−1)

If the summary prefix is empty, the score of a sentence is
as defined before in Section 2.2. If the summary prefix
is non-empty, the values of some features are discounted
to avoid redundancy and the weighting function uses the
modified feature values:

Score(si|prevS) =
∑

k=1...K

wkfk(si|prevS)

In particular, the values of all features that decompose
as a sum of frequency estimates for words (content words,

tokens, bigrams, skip bigrams, multi-word expressions)
are discounted as follows: if the given word n-gram oc-
curs in the summary prefixprevS , its frequency estimate
is multiplied by a discount factorα. For example, the
SumClusterFrequency feature is defined as follows:

f(s|prevS) =
∑

i=1...m

disc(ci, prevS)p̂(ci)

The value of the discount factor is:disc(ci, prevS) =
α if ci ∈ prevS , anddisc(ci, prevS) = 1 otherwise.
Similarly, for theSumClusterIDFFrequency feature, we
update by adding a term, rather than multiplying by a fac-
tor, because that feature is in the log domain and multi-
plying the frequency by a factorα is equivalent to adding
log(α) in log-space:−log(pα) = −log(p) − log(α).

Similar updating was performed in (Nenkova et al.,
2006) and (Yih et al., 2007). The main difference is that
in PYTHY we have many more types of word frequency
features. At present we have chosen to discount all fre-
quency features in the same way , using the same discount
factorα.1 However, our experiments suggest that it will
be beneficial to fit separate discount factors for different
feature types. As it turned out, our system as submitted
in the DUC 2007 main task did not perform the same dis-
counting strategy for the features over all tokens:Sum-
TopicTokenFrequency andSumClusterTokenSkipBigram-
Frequency. For these two features the system performed
more conservative discounting (discounting only content
word repetitions and not discounting stop word repeti-
tions). This was unintended, yet it had a substantial pos-
itive effect on performance. This leads us to conclude
that different discounting strategies may be applicable to
different feature types.

2.5 Search

In our submission of 2006, the search for a highest-
scoring summary was greedy and employed several
heuristics. In our present submission, having defined
scores for summaries according to the model, we attempt
to perform a more exact search for the summary with the
best score.

We employ a search algorithm based on a dynamic pro-
gramming solution for the knapsack problem (McDon-
ald, 2007). As in (McDonald, 2007), our search is not
exact, because the mechanism for modeling redundancy
induces global dependencies. We employ beams for each
partial summary length to improve the accuracy of the
search. We experimented with several different sizes of
the beams and found that a beam size of five was enough
to reach optimalROUGE performance. When we used

1We fit the discount factorα to maximize the ROUGE-2
score of the system on a subset of the training data.

Feature Set No Simplified Simplified
R2 SU4 R2 SU4

SumFocus 0.078 0.132 0.078 0.134
PYTHY 0.089 0.140 0.096 0.147

Table 1: Performance of Pythy and systems including feature
subsets with and without using simplified sentences. Results are
ROUGE-2 and ROUGE-SU4 recall on all words on DUC06.

larger beam sizes, the search algorithm found summaries
with better model scores, but this did not result in im-
proved performance.

3 Experiments

In this section we discuss the performance of the system
and analyze the contribution of the new features which
were not available in SumFocus. We also analyze the
performance of systems using different training criteria.

The models discussed were trained on the DUC2005
data, using the combination of three criteria discussed in
Section 2.3. We report results on the DUC2006 data. Ta-
ble 1 shows results for the SumFocus feature set and the
complete feature set (PYTHY). For each of these sets, we
report results with and without using sentence simplifica-
tions. When sentence simplifications are used, they are
added as candidate sentences both in training and testing.
For both feature sets we fit the discount factorα through
optimizing ROUGE-2on a subset of the DUC2005 data,
using a grid search onα.

We should note that the SumFocus model shown in the
Table is not equivalent to the SumFocus model of MSR’s
submission in 2006, which used a grid search against
ROUGE-2 to select the relative weights of general and
topic frequencies of words and a greedy search algorithm
for finding summaries. The SumFocus model discussed
here uses the learning and search algorithms presented
above in Section 2.

The table shows that PYTHY significantly outperforms
a system using only the SumFocus features. We can also
see that while sentence simplifications have a small con-
tribution toROUGEwhen the minimal SumFocus feature
set is used, their contribution is much larger for the full
feature set of PYTHY . This is perhaps due to the in-
creased ability of the feature set to judge the quality of
sentence simplifications.

By using sentence simplification, we create more space
to capture important content. The average number of sen-
tences in a summary extracted by PYTHY is 17.04 when
not using sentence simplification, while with simplifica-
tion the number of sentences increases to 20.1.

To provide an intuition for the most important fea-
tures of PYTHY , the following are the top seven fea-
tures and their rounded weights:SumTopicFrequency
(170), SumTopicTokenFrequency(81), SumHeadlineFre-

Criterion Num Pairs Train Acc ROUGE-stop ROUGEall
R2 SU4 R2 SU4

Oracle 941K 93.1 0.076 0.107 0.093 0.143
SCUs 430K 62.0 0.078 0.108 0.086 0.134
ModelFreq 6.3Mln 96.9 0.076 0.106 0.096 0.147
All 7.7Mln 94.2 0.076 0.107 0.096 0.147

Table 2: Performance of PYTHY using simplified sentences, when different criteria are used for training. Results are ROUGE-2
and ROUGE-SU4 recall on content and all words on DUC06.

quency(42), SumStartClusterFrequency (17), SumSkip-
BigramTopicFrequency(17),SumClusterFrequency(14).

Next we analyze the performance of the PYTHY fea-
ture set when the weights are trained according to each
of the three criteria of Section 2.3 and their combination.
The results are shown in Table 2.

The second column in the table shows the number of
training sentence pairs that each criterion generates. The
SCU criterion generates the smallest number of compara-
ble pairs, because less than half of the clusters have Pyra-
mid annotations and because not many sentences in these
clusters have content unit annotations. The ModelFreq
criterion generates many more training pairs, because al-
most any two sentences are comparable according to it.
Using all training criteria results in nearly eight million
training instances.

The table also shows the training set accuracy of each
model on the pair-wise criterion in the third column. That
is, the fraction of sentence pairs, for which the “better”
sentence received a higher score according to the model.
We can see that these accuracies are generally high, ex-
cept for the Pyramid derived criterion; it seems that the
model is not able to learn the ranking according to content
units. This could be either because the SCU annotations
may be noisy or because the feature set we are using is
not able to represent the ranking. The table also contains
ROUGEscores for models trained using each criterion and
the three in combination. We can see that even though the
SCU-trained model achieves significantly lower scores
onROUGEmeasures against all words, its score is slightly
higher for measures that ignore stop words.

Since we ultimately care about optimizingROUGEas
well as Pyramid content scores, we used a combination
of all criteria for the final model PYTHY . It remains to
be tested whether an SCU-trained model would result in
a system with a higher Pyramid score.

4 Update Summarization

DUC 2007 included an update summarization pilot ex-
ercise in which the goal was to produce summaries of a
set of documents given an already known/read set of doc-
uments within a set of topics. For each topic, the task
was to generate three 100-word summaries, from each of
three temporally-ordered document sets (A, B, C):

• a summary of set A (10 documents);

• a summary of set B (8 documents), given that the
reader has already seen A; and

• a summary of set C (7 documents), given that the
reader has already seen A and B.

PYTHY took part in the update summarization task as
system 42.

4.1 Novelty classifier

To participate in this task the system was augmented by
incorporating a score returned by a linear SVM novelty
classifier that had been trained on TREC novelty track
data from 2002 and 2003, a total of 23,846 sentences
(Soboroff and Harman, 2003; Voorhees, 2004). The sen-
tences from these two data sets are grouped into a to-
tal of 100 topics, and for each topic the sentences were
presented for feature extraction (and classification) in se-
quence: Given the previously seen sentences within the
topic (BG = background), each sentences is labeled as
being novel or otherwise. The SVM features are a com-
bination of standard distance metrics and term overlap
measures. The probability distance measures and the co-
sine similarity listed below use unigram word distribution
representations of sentences and background.

• Kullback-Leibler divergence (both fors vs. BG and
BG vs.s)

• Jensen-Shannon divergence

• Cosine similarity

• Number of content words in the intersection of BG
and S (absolute and normalized by length of S)

• number of named entities2 in the intersection of BG
and S (absolute and normalized by length of S).

In training, word overlap features and Jensen-Shannon
divergence were assigned the greatest weights by the
classifier, followed by cosine similarity.

2Extracted from Wikipedia (www.wikipedia.org) by scan-
ning all links and treating page titles as a named entities. Em-
bedded links to pages are then counted as possible synonymous
matches to the named entity.

We integrated the novelty detection classifier with
PYTHY as follows. We used a weighting factorν for
the novelty model and multiplied the sentence scores of
PYTHY by the probability according to the novelty model
that the sentence is novel, raised to the power ofν. The
dynamic sentence score of sentencesi when extending a
partial summaryprevS becomes as follows:

Score(si|prevS) = ScorePythy(si|prevS)Pr(n(si|BG))
ν

Here BG denotes the background document set.
Pr(n(si|BG)) is a calibrated probability that the sen-
tencesi is novel andν is an exponent used to trade off
the relative influence of PYTHY and the novelty classi-
fier. We estimatedν by hand, after eye-balling the results
produced on the sample update task set, choosing a value
of 1 for the submitted system.

5 Results in DUC 2007

5.1 Main task

The main summarization task in DUC 2007 required par-
ticipants to generate 250-word summaries of 45 clusters
of 25 newswire documents each in response to short ques-
tions about their content. PYTHY (as System 29) placed
2nd out of 30 systems participating in theROUGE-2eval-
uation, with an officialROUGE-2score of 0.12028 that is
significantly better (at the 95% confidence interval) than
peer summaries that ranked 6th or lower. On this metric,
the upper bound of the confidence interval overlaps with
the lower bound of the confidence intervals of 5 human
summarizers.

On ROUGE-SU4, PYTHY ranked 3rd, with a score of
0.17074, within the confidence intervals of the lowest
scoring two human summarizers, and significantly better
than peer systems that placed 8th or lower. In the human
evaluations, PYTHY ranked fifth-equal in terms of Con-
tent. However, it placed only 24th in terms of Linguistic
Quality, a mismatch that is primarily attributable to a low
Grammaticality score stemming from issues in sentence
simplification

PYTHY was also one of 11 peers that participated in
the Pyramid evaluation. Here the system placed first
equal in overall Pyramid score, and second in terms of
mean Semantic Content Units (SCUs), with an average
11.19 SCUs per summary, and a middle-ranked 2.14 rep-
etitions.

5.2 Update summarization pilot task

In contrast with the main task, the novelty-classifier-
augmented PYTHY (peer system 42) performed less ro-
bustly, ranking an average 15th out of 24 participating
peers, according to the combinedROUGE-2, ROUGE-SU4
and Pyramid scores. The system was within the 95% con-
fidence intervals of systems ranked 10–18 byROUGE-2
and those ranked 8–18 underROUGE-SU4.

System R-2 R-SU4

PYTHY+Novelty(1) 0.07135 0.11164
PYTHY+Novelty(.5) 0.07879 0.11929
PYTHY+Novelty(.1) 0.08721 0.12958
PYTHY 0.08686 0.12876
SumFocus 0.07002 0.11033

Table 3: PYTHY Performance on the Update Summarization
Pilot Task

To understand the performance of the novelty-
augmented PYTHY system better, we performed experi-
ments using the DUC2007 update model summaries. We
tested the system containing only SumFocus features, the
PYTHY system, and PYTHY augmented with the novelty
classifier, using values1, 0.5, and0.1 for the parameter
ν. The weights used are shown in brackets in the system
names in Table 3. The submitted system used a weight of
ν = 1, a parameter for which we had no labelled data on
which to train.

Table 3 showsROUGE-2and ROUGE-SU4scores ob-
tained by the different systems. The results we report here
are very slightly different (higher) than the official results
from DUC07, because we use a non-jackknifed version
of the ROUGEscript to score models. We can see from
the table that the optimal value for the weight of the nov-
elty model is smaller than 1. The unaugmented PYTHY

system, which ignores the background documents, out-
performs our submitted version and achieves a perfor-
mance which is more consistent with out performance on
the main competition track. PYTHY augmented with the
novelty classifier using a setting ofν = 0.1 outperforms
PYTHY .

Excessive weight assigned to novelty appears to have
had the effect of biasing the system to sentences that are
technically novel, but not necessarily relevant. This effect
shows up particularly strikingly in some topics, namely
the B clusters of 0711 and 7021, where the system iden-
tified low-relevance information as novel, resulting in
Pyramid scores of 0.

5.3 Discussion

Overweighting of the novelty classifier feature may not
be the only reason for PYTHY ’s degradation on the up-
date summarization task. PYTHY uses a large number of
features whose value distributions are sensitive to prop-
erties of the clusters, and the system may be brittle when
those properties change.

The document clusters in DUC 2005 and DUC 2006
are reasonably large, averaging 700 and 920 sentences.
The clusters of the DUC07 main task were smaller, with
540 sentences per cluster on average. The clusters in the
update task consisted of few documents, and the docu-

ments were shorter, yielding an average of 180 sentences
per cluster. The potential impact of these differences
in data size should not be underestimated. For exam-
ple, if the position feature in the training set takes values
between1 and 100, because documents normally have
around 100 sentences, and in testing the same feature
only has values between 1 and 15, the learned weight may
be inappropriate when applied to the new data.

In similar vein, we believe that relative frequency
scores estimated from small document collections may
not be sufficiently indicative of topicality, because per-
haps even the most on-topic terms occur only infre-
quently.

6 Post-DUC 2007: Future Work

PYTHY demonstrates that learning of sentence-level scor-
ing functions using a combination of goodness metrics
offers a promising line of investigation in extractive sum-
marization. In the future we expect to explore ways to
overcome the robustness issues presented to the system
by changes in the distribution of the data. In addition, the
grammatical quality of simplified sentences offers scope
for improvement, and we will be attempting to better
reconcile the competing demands of novelty and rele-
vance in our novelty detection. We also expect to be-
gin to address higher level challenges, such as learning
features over whole summaries, as opposed to individual
sentences.

Acknowledgements

This paper has benefited from discussions with Wen-Tau
Yih and Chin-Yew Lin. Krysta Svore kindly provided
us with the named entity list generated from Wikipedia.
Galen Andrew provided useful comments on a draft ver-
sion. In addition, we would like to thank members of the
DUC community who contributed to the Pyramid evalua-
tion. Our thanks also goes to members of the Butler-Hill
group, especially Ben Gelbart, for their assistance with
Pyramid creation and annotation.

References

Chris J.C. Burges, Tal Shaked, Erin Renshaw, Ari Lazier,
Matt Deeds, Nicole Hamilton, and Greg Hullender.
2005. Learning to rank using gradient descent. InIn-
ternational Conference on Machine Learning (ICML
2005).

Terry Copeck, Diana Inkpen, Anna Kazantseva, Alistair
Kennedy, Darren Kipp, Vivi Nastase, and Stan Sz-
pakowicz. 2006. Leveraging DUC. InDocument Un-
derstanding Workshop (DUC 2006).

Ofer Dekel, Christopher Manning, and Yoram Singer.
2004. Log-linear models for label ranking. InNeural
Information Processing Systems (NIPS 2004).

Seeger Fisher and Brian Roark. 2006. Query-focused
summarization by supervised sentence ranking and
skewed word distributions. InDocument Understand-
ing Workshop (DUC 2006).

Julian Kupiec, Jan Pedersen, and Francine Chen. 1995.
A trainable document summarizer. InSpecial Interest
Group in Information Retrieval (SIGIR 1995).

Chin-Yew Lin. 2004. ROUGE: A package for automatic
evaluation of summaries. InWorkshop on Automatic
Summarization at ACL 2004.

Ryan McDonald. 2007. A study of global inference al-
gorithms in multi-document summarization. InEu-
ropean Conference on Information Retrieval (ECIR
2006).

Ani L. Nenkova, Lucy Vanderwende, and Kathleen McK-
eown. 2006. A compositional context sensitive mul-
tidocument summarizer. InSpecial Interest Group in
Information Retrieval (SIGIR 2006).

Rebecca J. Passoneau, Ani Nenkova, Kathleen McKe-
own, and Sergei Sigelman. 2005. Applying the pyra-
mid method in DUC 2005. InDocument Understand-
ing Workshop (DUC 2005).

Eric K. Ringger, Robert C. Moore, Eugene Charniak,
Lucy Vanderwende, and Hisami Suzuki. 2004. Using
the Penn Treebank to evaluate non-treebank parsers.
In Conference on Language Resources and Evaluation
(LREC 2004).

Ian Soboroff and Donna Harman. 2003. Overview of the
TREC 2003 novelty task. In NISTSpecial Publica-
tion 500-255: The Twelfth TextREtrieval Conference
(TREC2003).

Lucy Vanderwende, Hisami Suzuki, and Chris Brockett.
2006. Microsoft Research at DUC 2006: Task-focused
summarization with sentence simplification and lexical
expansion. InDUC 2006.

Ellen M. Voorhees. 2004. Overview of TREC 2004.
In NIST Special Publication 500-261: The Thirteenth
Text REtrieval Conference (TREC2004).

Wen-tau Yih, Joshua Goodman, Lucy Vanderwende, and
Hisami Suzuki. 2007. Multi-document summariza-
tion by maximizing informative content-words. InIn-
ternational Joint Conference on Artificial Intelligence
(IJCAI 2007).

