## ECCV 2018 Tutorial

# Video Recognition and Retrieval at the TRECVID Benchmark

## Lecture 3: Ad-hoc Video Search (AVS) Task

## Kazuya UEKI



Waseda University

Meisei University



## Part I: the Ad-hoc Video Search (AVS) task

- Goal of the AVS task
- Definition of the AVS task

## Part II: Results of submitted systems

- Some participants' implementations
- Evaluation results

## Part III: Summary and future works

## Part I: the Ad-hoc Video Search (AVS) task

#### What is the AVS task?

## Zero-shot Video retrieval using a query phrase

a person holding a poster on the street at daytime



The major difficulty in this task:

- A system must retrieve videos under conditions where no training videos match a query phrase.
- A system have to retrieve video sequences that simultaneously contain multiple detection targets (*concepts*), such as persons, objects, scenes, and actions.

#### **Ad-hoc Video Search Task Definition**

- Goal: promote progress in content-based retrieval based on end user ad-hoc queries that include persons, objects, locations, activities and their combinations.
  - Who : concrete objects and being (kind of persons, animals, things)
    What : are the objects and/or beings doing ? (generic actions, conditions/state)
    Where : locale\_site\_place\_geographic\_architectural
  - Where : locale, site, place, geographic, architectural
  - When : time of day, season
- Task: Given a test collection, a query, and a master shot boundary reference, return a ranked list of at most 1,000 shots (out of 335,944) which best satisfy the need.
- **Testing data**: 4,593 Internet Archive videos (IACC.3), 600 total hours with video durations between 6.5 min to 9.5 min.

#### Person + Action + Object + Location

- Find shots of one or more people eating food at a table indoors
- Find shots of one or more people driving snowmobiles in the snow
- Find shots of a man sitting down on a couch in a room
- Find shots of a person talking behind a podium wearing a suit outdoors during daytime
- · Find shots of a person standing in front of a brick building or wall

#### Person + Action + Location

- Find shots of children playing in a playground
- Find shots of one or more people swimming in a swimming pool
- · Find shots of a crowd of people attending a football game in a stadium
- · Find shots of an adult person running in a city street

### **TRECVID 2017 queries by complexity**

#### Person + Action/state + Object

- Find shots of a person riding a horse including horse-drawn carts
- · Find shots of a person wearing any kind of hat
- Find shots of a person talking on a cell phone
- · Find shots of a person holding or operating a tv or movie camera
- Find shots of a person holding or opening a briefcase
- Find shots of a person wearing a blue shirt
- Find shots of person holding, throwing or playing with a balloon
- Find shots of person wearing a scaft
- Find shots of a person holding, opening, closing or handing over a box

#### Person + Action

- Find shots of a person communicating using sign language
- Find shots of a child or group of children dancing
- Find shots of people marching in a parade
- · Find shots of a male person falling down

### **TRECVID 2017 queries by complexity**

#### Person + Object + Location

· Find shots of a man and woman inside a car

#### Person + Location

- · Find shots of a chef or cook in a kitchen
- · Find shots of a blond female indoors

#### Person + Object

· Find shots of a person with a gun visible

#### **Object + Location**

· Find shots of a map indoors

#### Object

- Find shots of vegetables and/or fruits
- · Find shots of a newspaper
- · Find shots of at least two planes both visible

## Four training data types:

- A used only IACC training data (0 runs)
- ✓ D used any other training data (40 runs)
- E used only training data collected automatically using only the query text (12 runs)
- F used only training data collected automatically using a query built manually from the given query text (0 runs)

## Two run submission types:

✓Manually-assisted (M) – Query built manually (19 runs)
 ✓Fully automatic (F) – System uses official query directly (33 runs)

| Team             | Organization                                                                                                                                                                                                       | Μ | F |
|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|---|
| INF              | Renmin University; Shandong Normal University; Chongqing<br>university of posts and telecommunications; Carnegie Mellon<br>University                                                                              |   | 4 |
| kobe_nict_siegen | Kobe University, Japan Center for Information and Neural<br>Networks, National Institute of Information and<br>Communications Technology (NICT), Japan Pattern<br>Recognition Group, University of Siegen, Germany |   | - |
| ITI_CERTH        | Information Technologies Institute, Centre for Research and<br>Technology Hellas                                                                                                                                   | - | 4 |
| ITEC_UNIKLU      | Klagenfurt University                                                                                                                                                                                              | 4 | 4 |
| NII_Hitachi_UIT  | National Institute of Informatics, Japan (NII); Hitachi, Ltd;<br>University of Information Technology, VNU-HCM, Vietnam<br>(HCM-UIT)                                                                               |   | 4 |
| MediaMill        | University of Amsterdam                                                                                                                                                                                            |   | 4 |
| Waseda_Meisei    | Waseda University; Meisei University                                                                                                                                                                               |   | 4 |
| VIREO            | City University of Hong Kong                                                                                                                                                                                       |   | 4 |
| EURECOM          | EURECOM                                                                                                                                                                                                            |   | 4 |
| FIU_UM           | Florida International University, University of Miami                                                                                                                                                              | 4 | - |

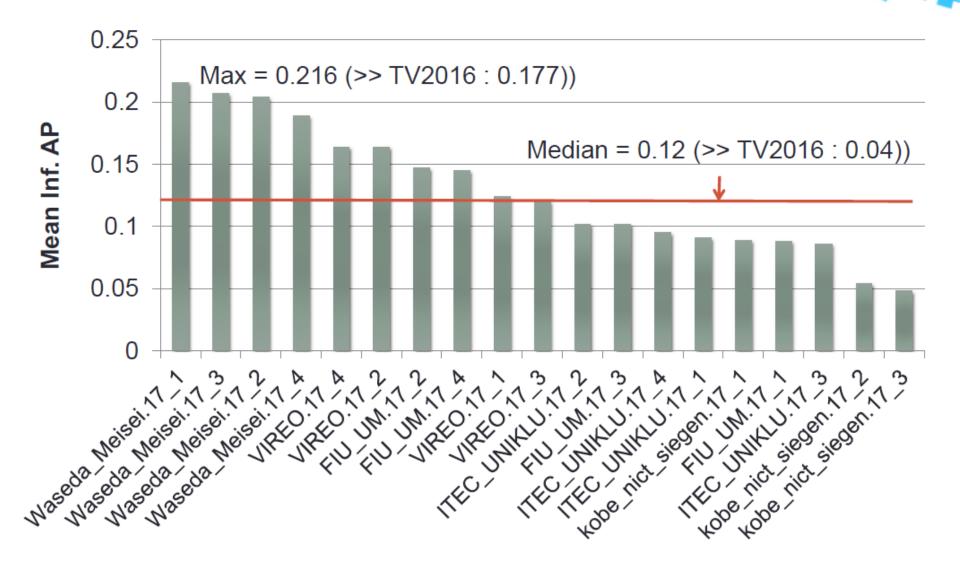
Each query assumed to be binary: absent or present for each master reference shot.

NIST sampled ranked pools and judged top results from all submissions.

Metrics: inferred average precision per query.

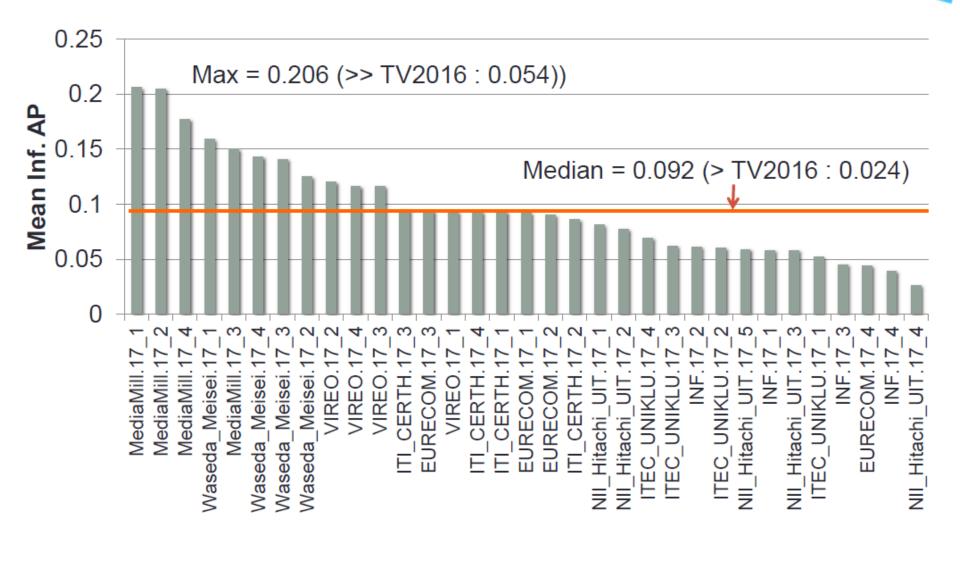
Compared runs in terms of **mean** *inferred average precision* across the 30 queries.

#### Submission scores for 19 manually assisted runs

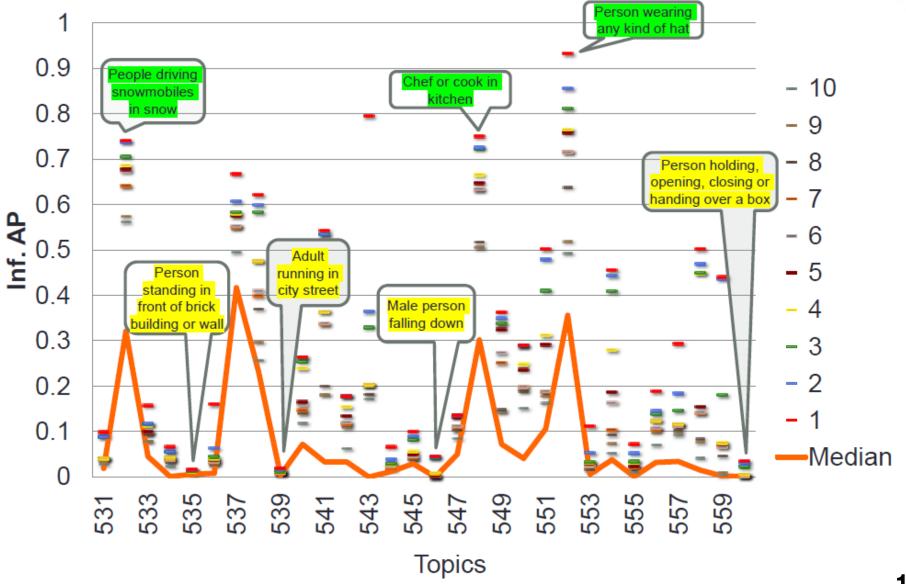


12

#### Submission scores for 33 fully automatic runs



#### **Top 10 infAP scores by query** (fully automatic)



## Which topics where easy or difficult overall?

| Top 10 Easy<br>(sorted by count of runs with InfAP >= 0.7) | Top 10 Hard<br>(sorted by count of runs with InfAP < 0.7)             |  |
|------------------------------------------------------------|-----------------------------------------------------------------------|--|
| a person wearing any kind of hat                           | an adult person running in a city street                              |  |
| a chef or cook in a kitchen                                | person standing in front of a brick building or wall                  |  |
| one or more people driving snowmobiles in the snow         | person holding, opening, closing or handing over a box                |  |
| one or more people swimming in a swimming pool             | a male person falling down                                            |  |
| a man and woman inside a car                               | child or group of children dancing                                    |  |
| a crowd of people attending a football game in a stadium   | children playing in a playground                                      |  |
| a newspaper                                                | person talking on a cell phone                                        |  |
| a person communicating using sign language                 | person holding or opening a briefcase                                 |  |
| a person wearing a scarf                                   | one or more people eating food at a table indoor                      |  |
| a person riding a horse including horse-drawn carts        | person talking behind a podium wearing a suit outdoors during daytime |  |
| dynamics in hard queries                                   | 5                                                                     |  |

# Part II: Results of submitted systems

#### [Step. 0] Preparation

#### More than 50,000 concepts

Build a large semantic concept bank using pretrained convolutional neural networks (CNNs) and support vector machines (SVMs).

Our video retrieval pipeline consists of three steps:

#### [Step. 1]

Extract several search keywords based on the given query phrases. (manually or automatically)

## [Step. 2]

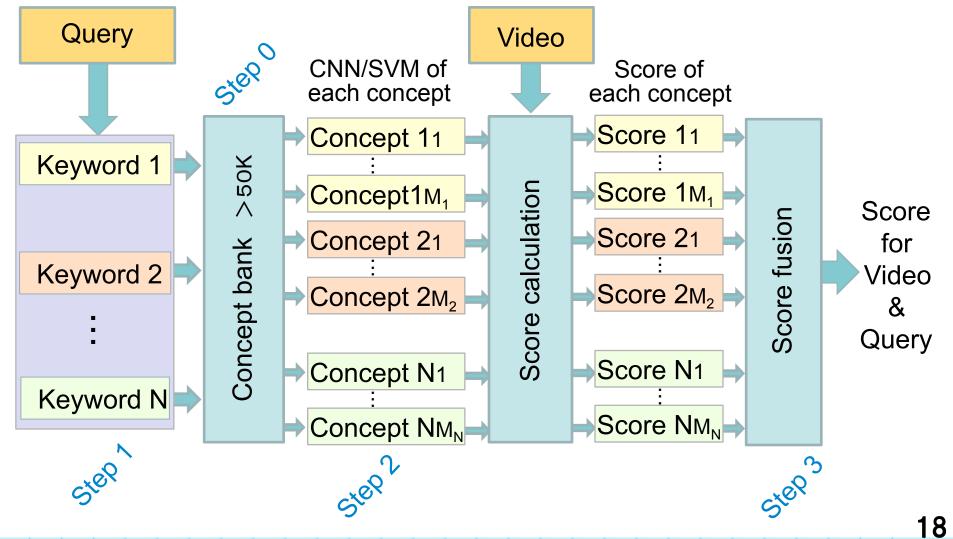
Choose concept classifiers based on selected keywords

## [Step. 3]

Combine the semantic concept scores to obtain the final search result.

#### Waseda\_Meisei system

"Find shots of one or more people driving snowmobiles in the snow"



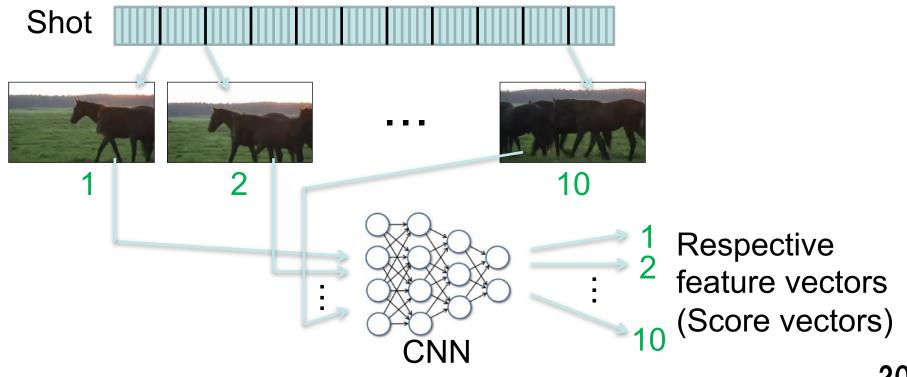
#### Our concept bank for the TRECVID 2017 AVS task

| Name          | Database              | # of concepts | Concept $type(s)$     |
|---------------|-----------------------|---------------|-----------------------|
| TRECVID346    | TRECVID (ImageNet)    | 346           | Object, Scene, Action |
| FCVID239      | FCVID [4] (ImageNet)  | 239           | Object, Scene, Action |
| UCF101        | UCF101 [8] (ImageNet) | 101           | Action                |
| PLACES205     | Places [10]           | 205           | Scene                 |
| PLACES365     | Places                | 365           | Scene                 |
| HYBRID1183    | Places, ImageNet      | 1,183         | Object, Scene         |
| IMAGENET1000  | ImageNet              | 1,000         | Object                |
| IMAGENET4000  | ImageNet              | 4,000         | Object                |
| IMAGENET4437  | ImageNet              | 4,437         | Object                |
| IMAGENET8201  | ImageNet              | 8,201         | Object                |
| IMAGENET12988 | ImageNet              | 12,988        | Object                |
| IMAGENET21841 | ImageNet              | 21,841        | Object                |

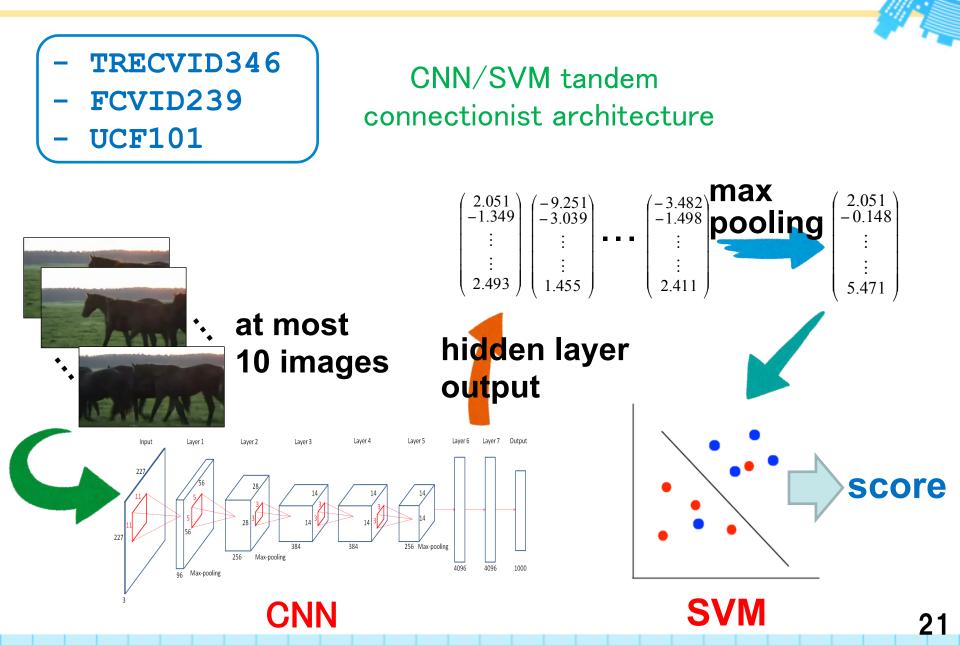
To provide good coverage for the given query phrases, we built a large concept bank consisting of more than 50,000 concepts.

#### **Feature extraction**

We selected at most 10 frames from each shot at regular intervals.



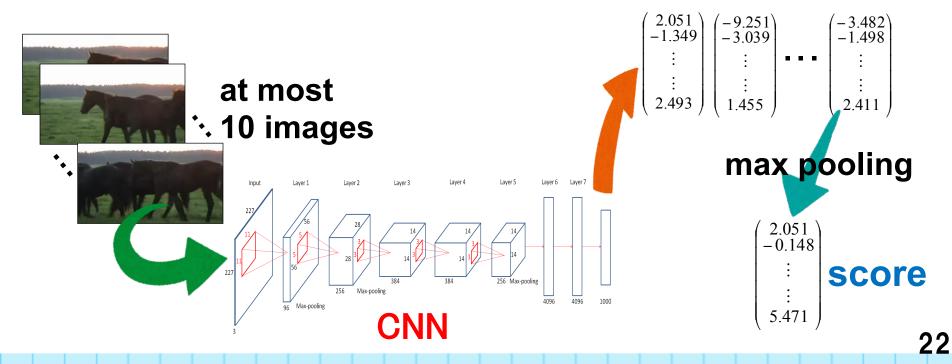
#### Waseda\_Meisei system [Step. 1]



#### Waseda\_Meisei system [Step. 1]

| PLACES205  | IMAGENET1000 | IMAGENET8201  |
|------------|--------------|---------------|
| PLACES365  | IMAGENET4000 | IMAGENET12988 |
| HYBRID1183 | IMAGENET4437 | IMAGENET21841 |

The shot scores were obtained directly from the output layer (before softmax was applied)



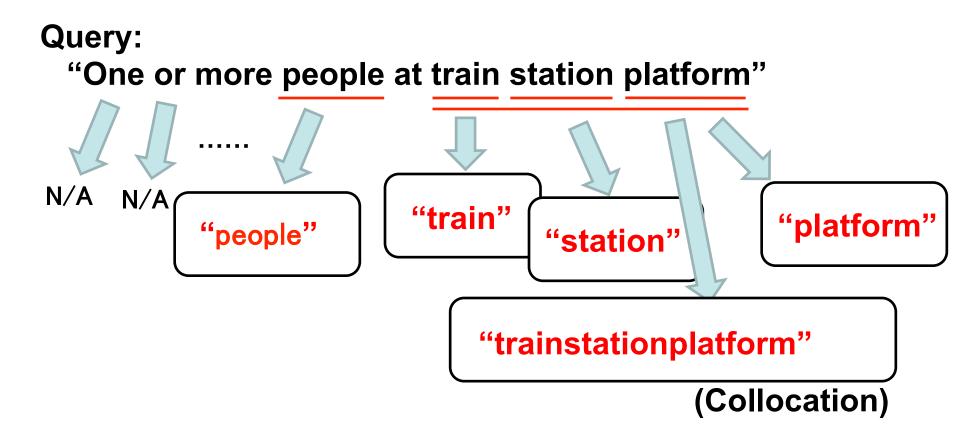
#### **Score normalization**

The score for each semantic concept was normalized over all test shots using a min-max normalization.

The maximum scores: 1.0 (most probable) The minimum scores: 0.0 (least probable)

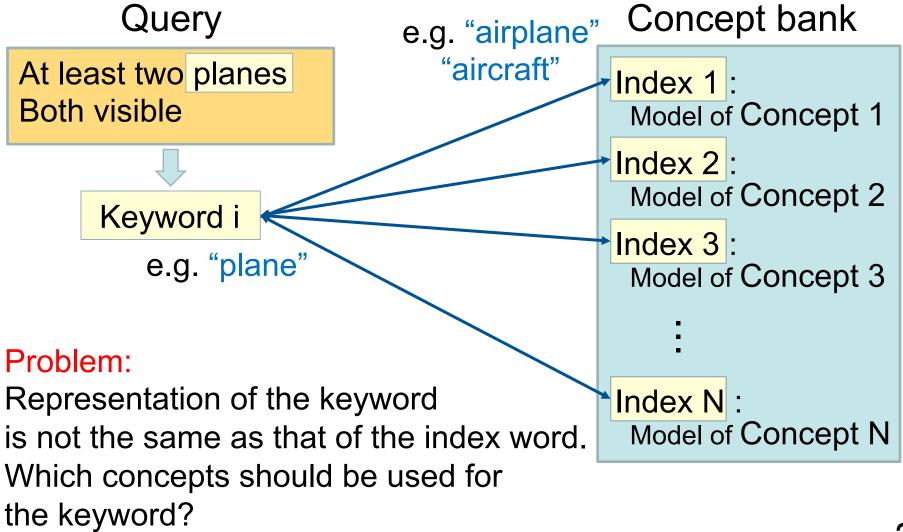
#### Waseda\_Meisei system [Step. 1]

**Extract keywords from a query.** 



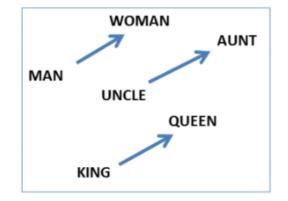
#### Waseda\_Meisei system [Step. 2]

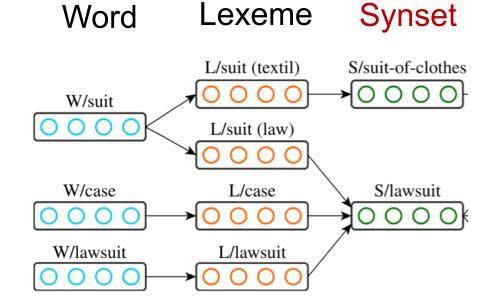
Choose concept classifiers based on selected keywords

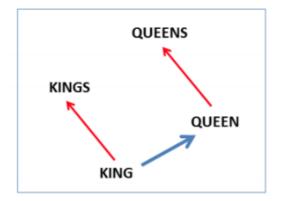


#### Waseda\_Meisei system [Step. 2]

- WordNet based method
  - Exact match of synset.
- Word2Vec based method
  - Similarity of skip-gram.
- Hybrid of WordNet & Word2Vec







To deal with no-classifier concepts:

Semantically similar concept was chosen using the word2vec algorithm.

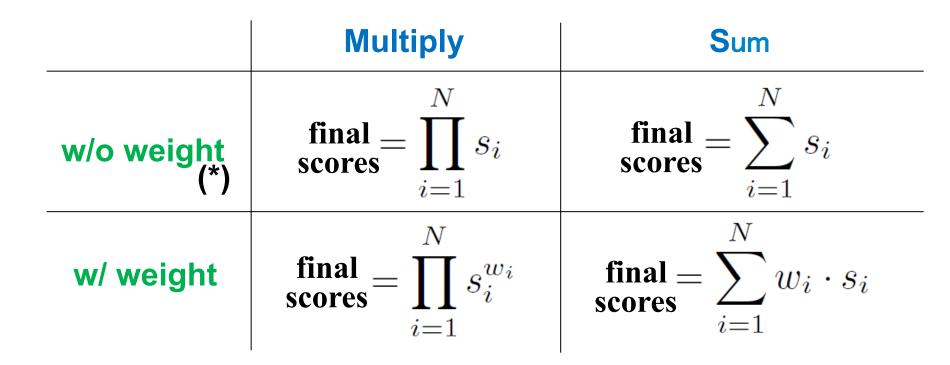


- telephone
- cellulartelephone
- deskphone

Usually use a concept having cosine similarity  $\geq 0.7$ (depend on submitted runs)

#### **Score fusion**

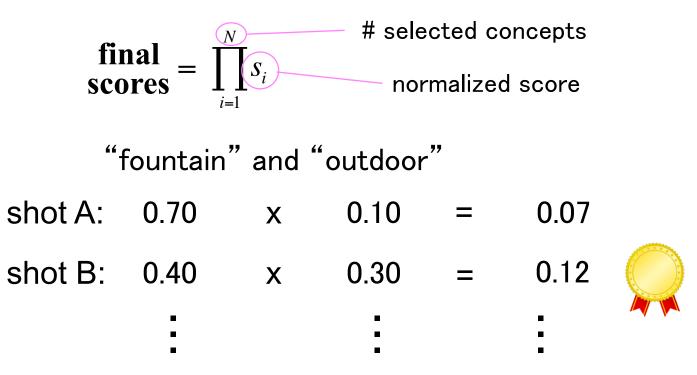
#### Calculate the final scores by score-level fusion



(\*) We used the IDF values calculated from the Microsoft COCO database as the fusion weights.

#### Multiply & w/o weight

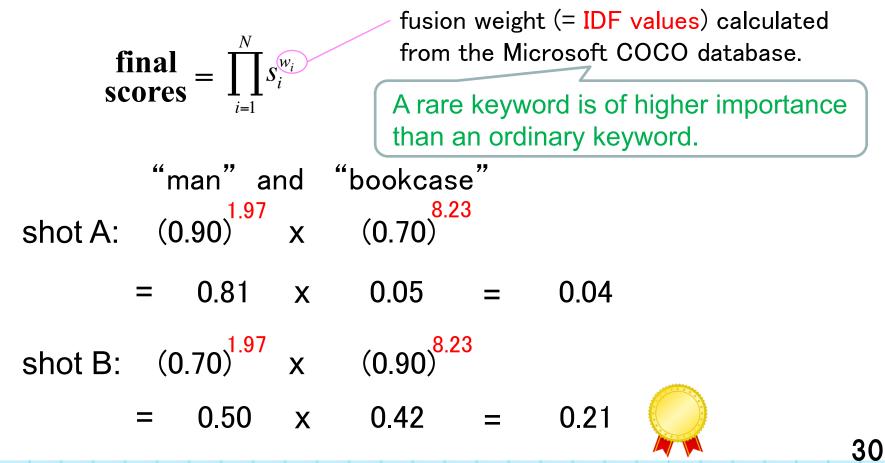
# Total score was simply calculated by multiplying the scores of the selected concepts.



Shots having all the selected concepts will tend to appear in the higher ranks.

#### Multiply & w/ weight

# Almost the same as the previous method except for the incorporation of a fusion weight.



#### Sum & w/o weight

Total score was calculated by summing the scores of the selected concepts.

 $\frac{\mathbf{final}}{\mathbf{scores}} = \sum_{i=1}^{N} S_i$ 

"fountain" and "outdoor"

shot A: 0.70 + 0.10 = 0.80shot B: 0.40 + 0.30 = 0.70





#### Sum & w/ weight

#### Summing weighted scores.

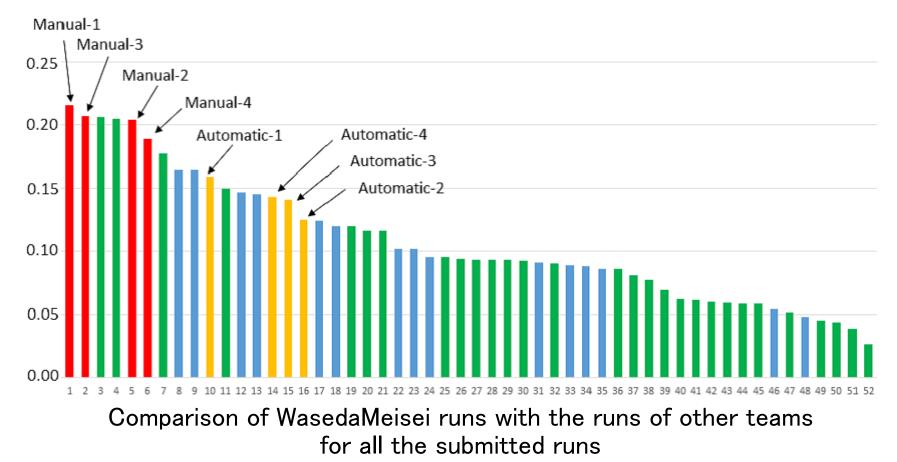
$$\frac{\mathbf{final}}{\mathbf{scores}} = \sum_{i=1}^{N} w_i \cdot s_i$$

"man" and "bookcase" shot A:  $(1.97 \times 0.90) + (8.23 \times 0.70) = 7.53$ 

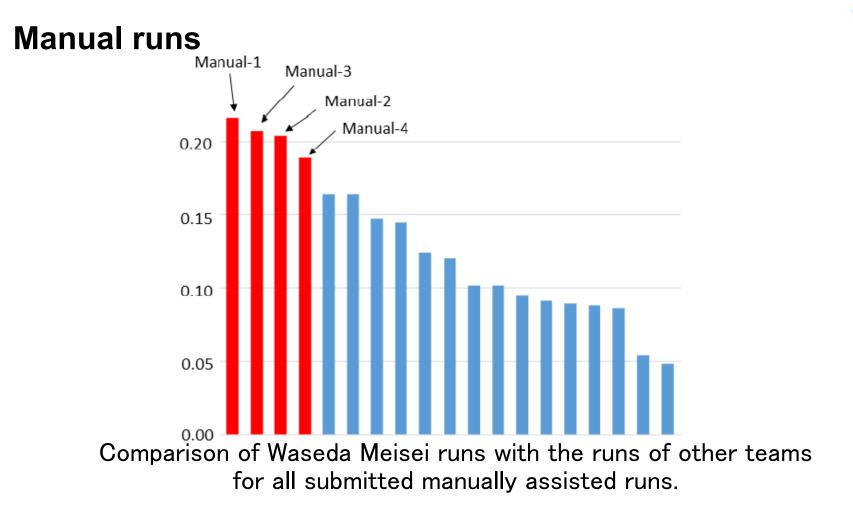
shot B:  $(1.97 \times 0.70) + (8.23 \times 0.90) = 8.79$ 



#### **Manual & Automatic runs**

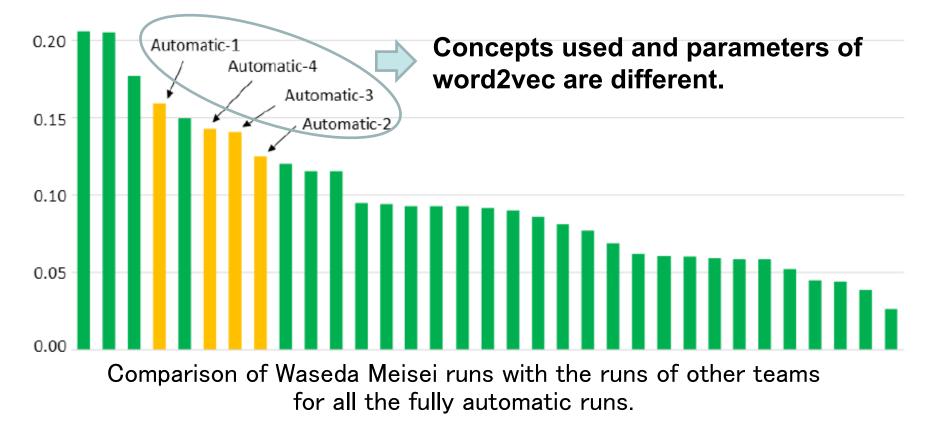


#### Our Manual-1 run ranked 1<sup>st</sup> among the 52 runs.



# Our manually assisted runs ranked 1st through the 4th overall.

#### **Automatic runs**



# Our fully automatic runs ranked us 2nd overall among all participants.

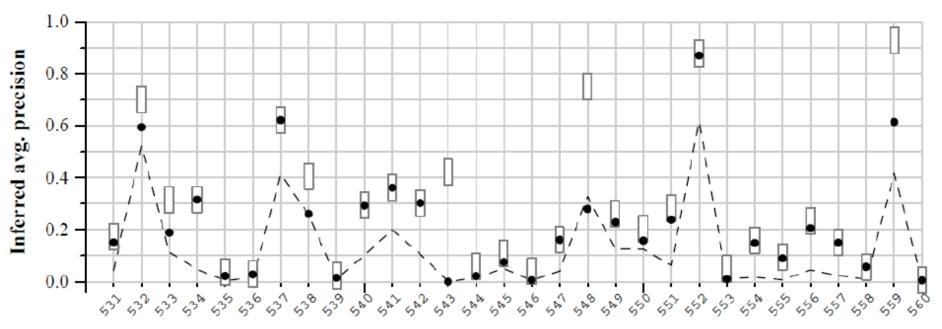
#### Comparison of Waseda\_Meisei runs

| Name        | Fusion method | Fusion weight | mAP  |
|-------------|---------------|---------------|------|
| Manual-1    | Multiply      | $\checkmark$  | 21.6 |
| Manual-2    | Multiply      |               | 20.4 |
| Manual-3    | Sum           | $\checkmark$  | 20.7 |
| Manual-4    | Sum           |               | 18.9 |
| Automatic-1 | Multiply      | $\checkmark$  | 15.9 |
| Automatic-2 | Multiply      | $\checkmark$  | 12.5 |
| Automatic-3 | Multiply      | $\checkmark$  | 14.1 |
| Automatic-4 | Multiply      | $\checkmark$  | 14.3 |

Manual vs. Automatic: Fusion method: Fusion weight:

Manual > Automatic Multiply > Sum w/ weight > w/o weight

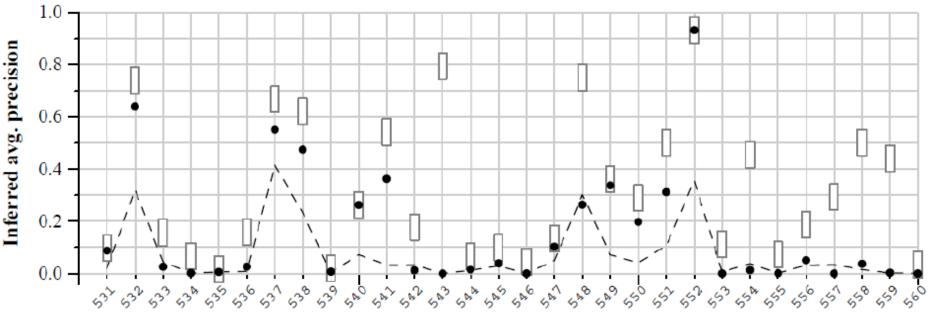
#### Manual runs



Average precision of our best manually assisted run (Manual1) for each query. Run score (dot), median (dashes), and best (box) by query.

High performance was achieved by using a relatively large number of semantic concept classifiers (> 50,000). The gap between the high and low performance widened; average precisions for several query phrases were almost zero.

#### **Automatic runs**



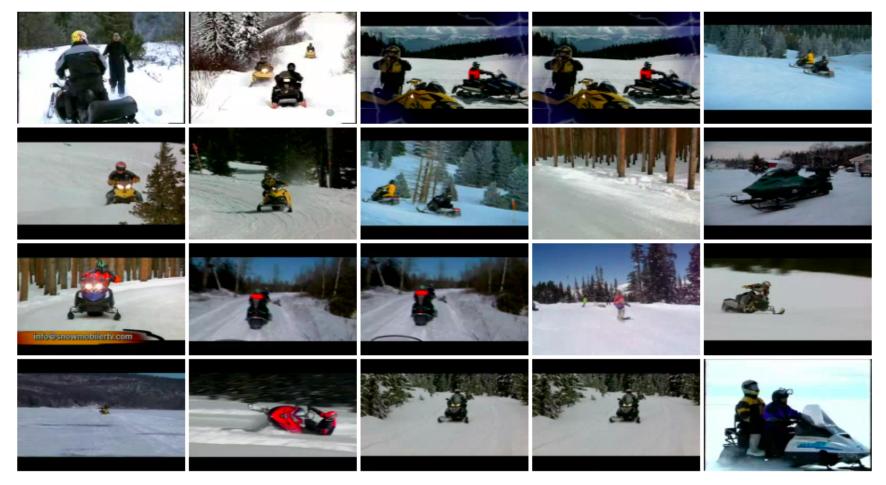
Average precision of our best fully automatic run (Automatic1) for each query. Run score (dot), median (dashes), and best (box) by query.

High performance was achieved by using a relatively large number of semantic concept classifiers (> 50,000). The gap between the high and low performance widened; average precisions for several query phrases were almost zero.

**Retrieved videos** (manually-assisted system)



"one or more people driving snow mobiles in the snow"



**Retrieved videos** (manually-assisted system)



"one or more people swimming in a swimming pool"



#### **Retrieved videos** (fully-automatic system)

#### "a person holding or operating a tv or movie camera"



Bad...

#### **Retrieved videos** (fully-automatic system)

#### "a person holding or operating a tv or movie camera"



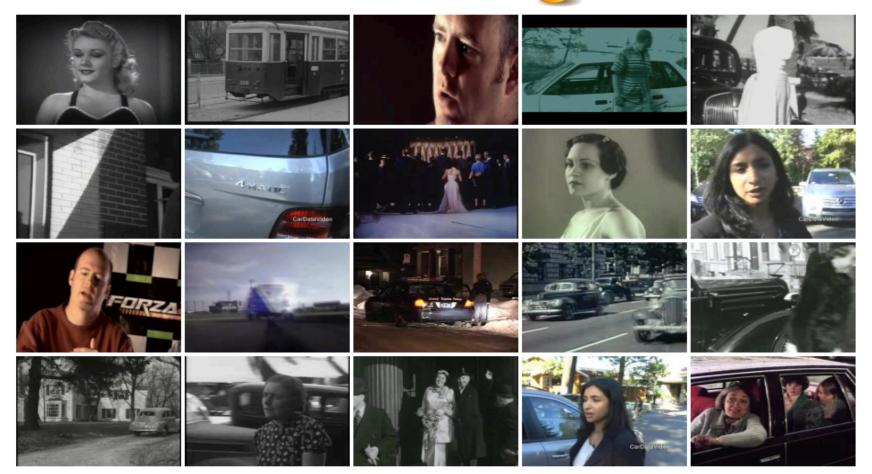
We needed to retrieve videos related to "tv camera" or "movie camera," but "tv" was treated individually and videos containing "tv" were retrieved incorrectly.



Bad

**Retrieved videos** (fully-automatic system)

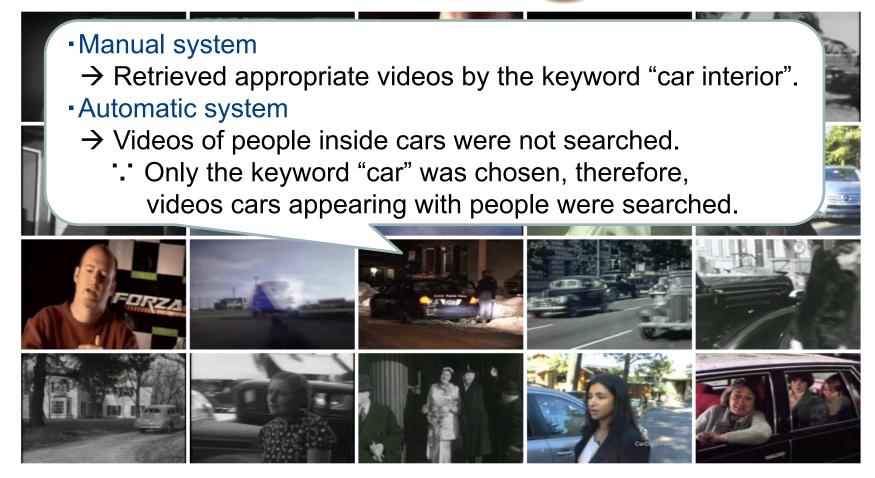
" a man and woman inside a car"



Bad...

#### Retrieved videos (fully-automatic system)

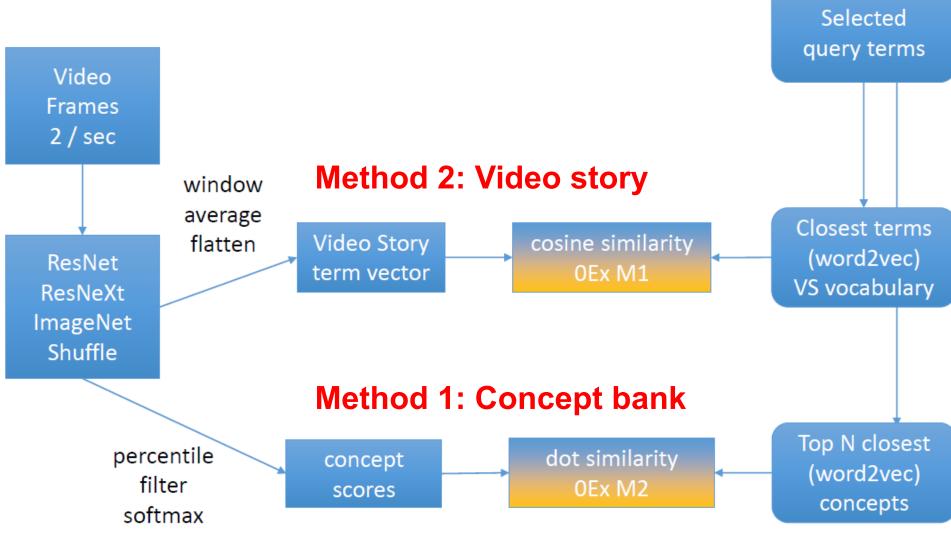
" a man and woman <u>inside a car</u>"



Bad...

- We solved the problem of ad-hoc video search using a combination of many semantic concepts and selecting appropriate concepts from a concept bank that includes a wide variety of concepts.
- We achieved the best performance among all the submissions in 2017.
- However, the performance was still extremely poor for some query phrases.

#### MediaMill system [Pipeline]



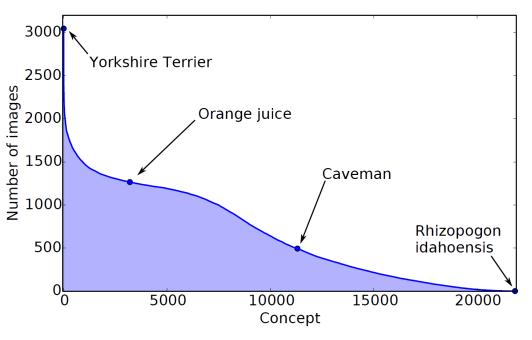
46

#### MediaMill system [Concept bank]

#### 22k ImageNet classes

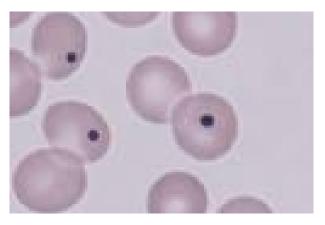
- Use as many classes as possible
- Find a balance between level of abstraction of classes and number of images in a class





296 classes with 1 image

#### Irrelevant classes



Siderocyte



#### Gametophyte

### MediaMill system [Concept bank]

#### **CNN training on selection out of 22k ImageNet classes**

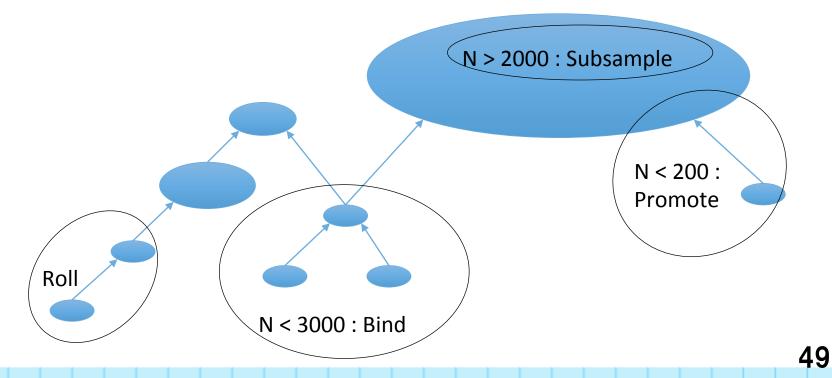
• Idea

- Increase level of abstraction of classes
- Incorporate classes with less than 200 samples
- Heuristics
  Roll, Bind, Promote, Subsample
  Result
  12,988 classes
  13.6M images
  Roll
  N < 200 : Promote</li>
  Promote

The ImageNet Shuffle: Reorganized Pre-training for Video Event Detection, Pascal Mettes and Dennis Koelma and Cees Snoek, International Conference on Multimedia Retrieval, 2016

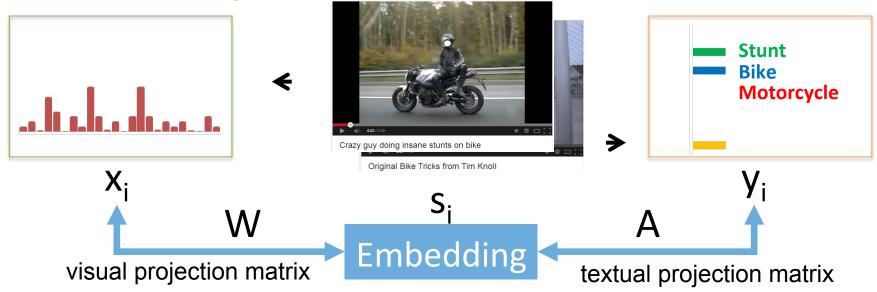
#### MediaMill system [Concept bank]

- Two networks
  - ResNet
  - ResNeXt
- Three datasets (subsets of ImageNet)
  - Roll Bind (3000) Promote (200) Subsample, 13k classes, training: 1000 images/class
  - Roll Bind (7000) Promote (1250) Subsample, 4k classes, training: 1706 images/class
  - Top 4000 classes, Breadth-first search >1200 images, training: 1324 images/class



### MediaMill system [Video story]

#### Embed the story of a video



#### Joint optimization of W and A to preserve

Descriptiveness:preserve video descriptions : L(A,S)Predictability:recognize terms from video content : L(S,W)

Videostory: A new multimedia embedding for few-example recognition and translation of events, Amirhossein Habibian and Thomas Mensink and Cees Snoek, Proceedings of the ACM International Conference on Multimedia, 2014

### MediaMill system [Video story]

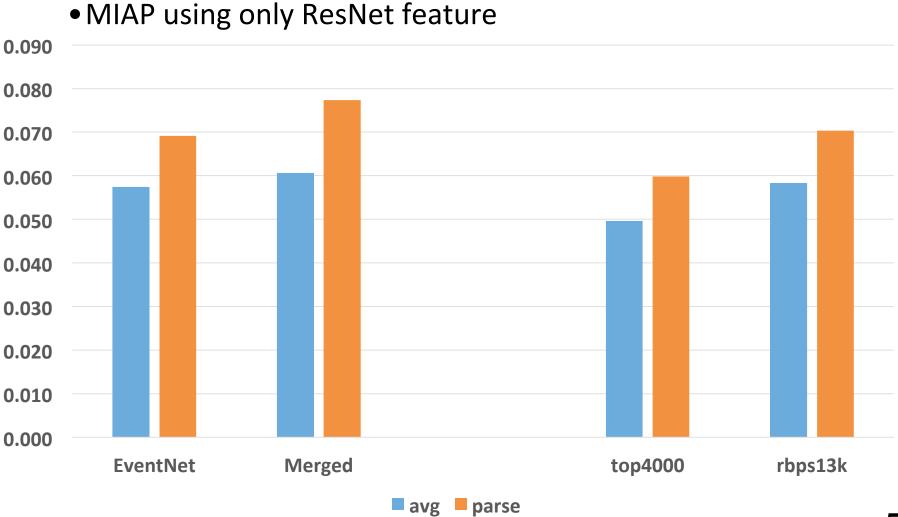
### **Video Story Training Sets**

- VideoStory46k www.mediamill.nl
  - 45826 videos from YouTube based on 2013 MED research set terms
- FCVID: Fudan Columbia Video Dataset
  - 87609 videos
- EventNet
  - 88542 videos
- Merged (VideoStory46k, FCVID, EventNet)
- Video Story dictionary: Terms that occur more than 10 times in the dataset
  - Merged : 6440 terms
- Using vocabulary of stemmed terms that occur more than 100 times in Wikipedia dump
  - With stemming: Respect the Video Story dictionary
  - 267.836 terms
- Use word2vec to expand them per video

### **Query Terms**

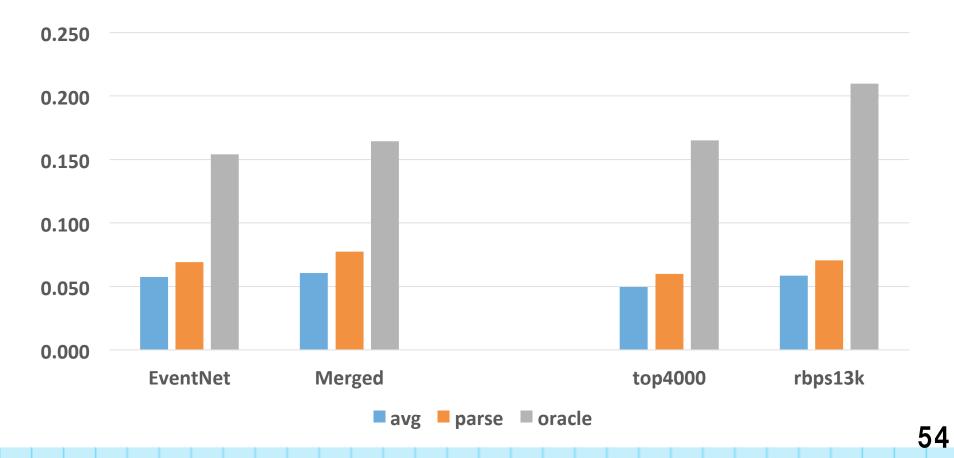
- Experiments show it is important to select the right terms
  - Instead of just taking the average of the terms in word2vec space
- Part-of-Speech tagging
  - <noun1> , <verb> , <noun2>
  - <subject> , <predicate> , <remainder>
- Query Plan
  - A.Use nouns, verbs, and adjectives in <subject>
    - unless it concerns a person (noun1 = "person", "man", "woman", "child", ...)
  - B.Use nouns in <remainder>
    - unless it concerns a person or noun is a setting ("indoors", "outdoors", ...)
  - C.Use <predicate>
  - D.Use all nouns in sentence
    - Unless noun is a person or a setting

#### The Effect of Parsing on 2016 Topics



#### (Greedy) Oracle on 2016 Topics

- Fuse top (max 5) words/concepts with highest MIAP
- MIAP using only ResNet feature



#### **Query Examples : The Good**

- A person playing drums indoors
- VideoStory terms avg :

person plai drum

- indoor
- VideoStory terms parse : drum
- VideoStory terms oracle :

beat

drum

snare

vibe

bng

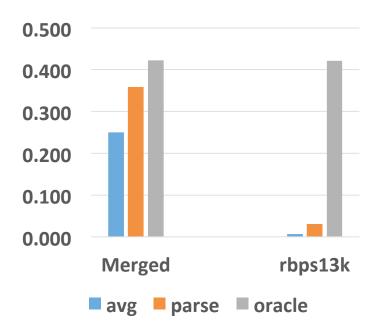


### **Query Examples : The Ambiguous**

- A person playing drums indoors
- Concepts top5 avg : guitarist, guitar player outdoor game drum, drumfish sitar player brake drum, drum

#### • Concepts top5 parse :

drum, drumfish brake drum, drum barrel, drum snare drum, snare, side drum drum, membranophone, tympan



Oracle : percussionist cymbal drummer drum, membranophone, tympan snare drum, snare, side drum

### **Query Examples : The Bad**

- A person sitting down with a laptop visible
- VideoStory terms avg :

person sit

laptop

- VideoStory terms parse : laptop
- VideoStory terms oracle :

monitor

aspir

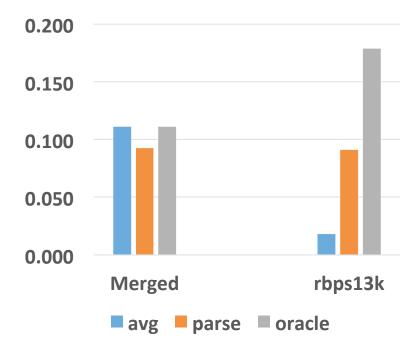
acer

alienwar

vaio

asus

laptop (rank 7)

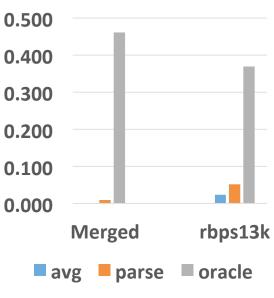


#### **Query Examples : The Difficult**

- A person wearing a helmet
- Concept top5 parse :

helmet (a protective headgear made of hard material to resist blows) helmet (armor plate that protects the head) pith hat, pith helmet, sun helmet, topee, topi batting helmet crash helmet

| <ul> <li>Concept top5 oracle :</li> </ul> |
|-------------------------------------------|
| hockey skate                              |
| hockey stick                              |
| ice hockey, hockey, hockey game           |
| field hockey, hockey                      |
| rink, skating rink                        |
|                                           |



#### **Query Examples : The Impossible**

#### • A crowd demonstrating in a city street at night

- Parsing "fails"
- Average wouldn't have helped
- •VS oracle :

vega squar gang times occupi

### • Concept oracle :

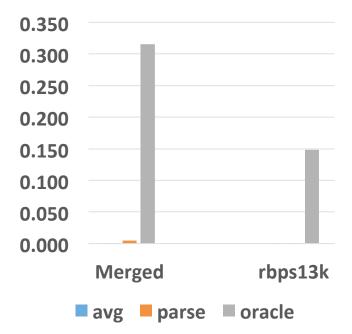
vigil light, vigil candle

motorcycle cop, motorcycle policeman, speed cop

rider

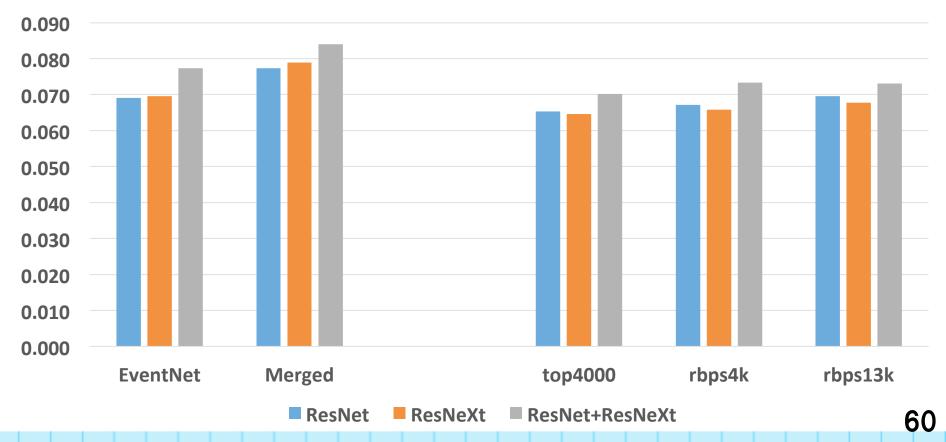
minibike, motorbike

freewheel



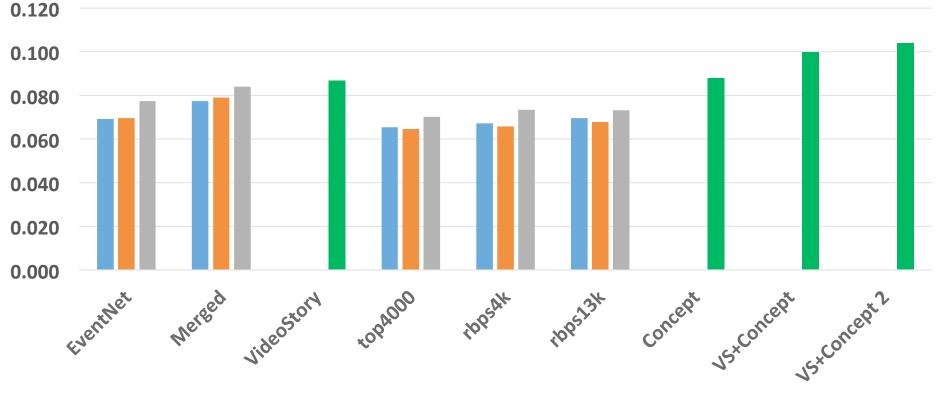
#### **Results 5 Modalities x 2 Features**

- VideoStory : ResNeXt is better than ResNet
- Concepts : ResNet is better than ResNeXt (overfit?)
- VideoStory is better than Concepts



### **Final Fusion**

- Concept fusion is slightly better than VideoStory
- Often complementary, also big difference for many topics
- Top 2/4 for concepts is slightly better than top 3/5

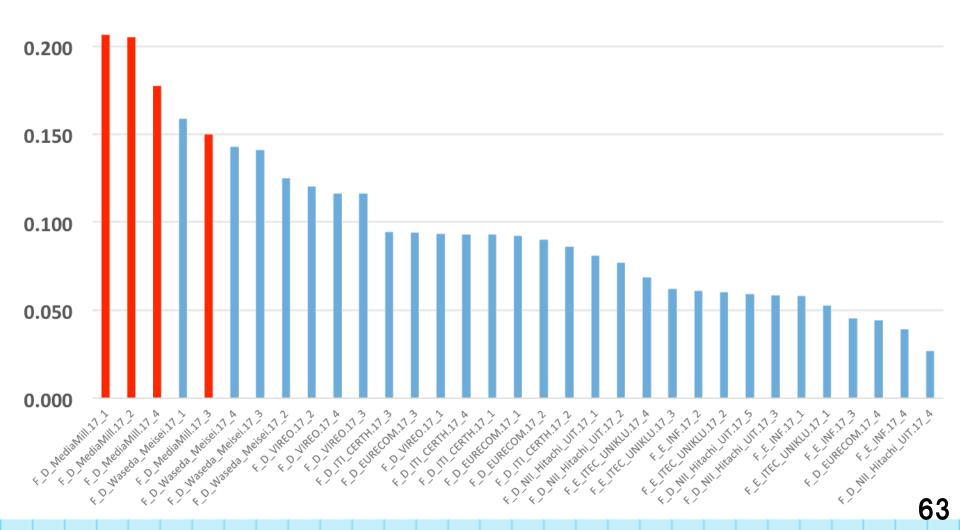


#### **AVS Submission**

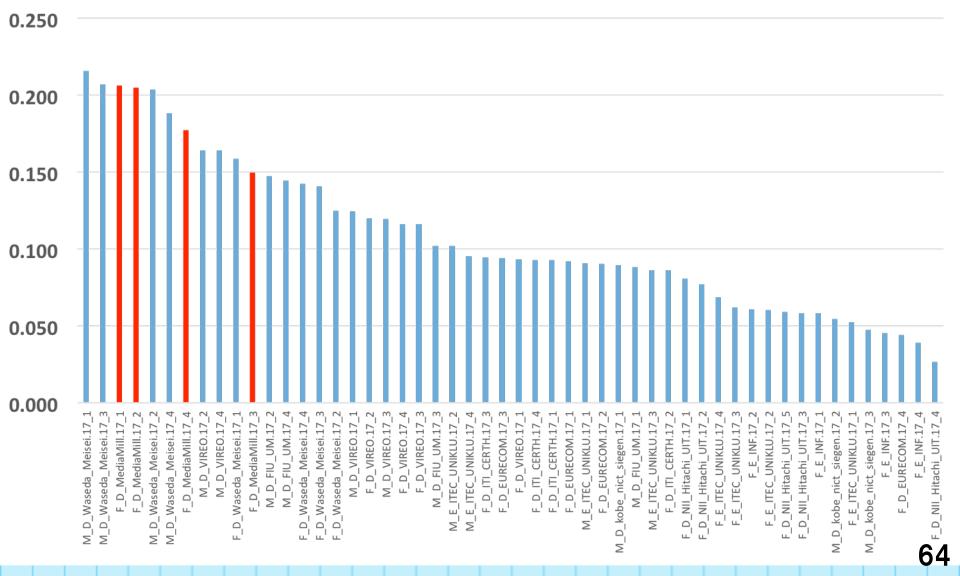
0.250 0.200 0.150 0.100 0.050 0.000 2016 2017 Fusion top24 Fusion top35 VideoStory Concepts 62

### All Fully Automatic AVS Submissions

0.250



#### All Automatic and Interactive AVS Submissions



# Conclusions

- Query parsing is important
- VideoStory and Concepts are good but will not "solve" AVS

# Part III: Summary and future works

## **2017 main approaches**

- Concept bank with automatic or manual mapping with query terms
- Combination of concept scores from Boolean operators
- Work on Query Understanding
- Rectified Linear Score Normalization
- Use of Video-To-Text techniques on shots
- Query expansion / term matching techniques
- Use of unified text-image vector space

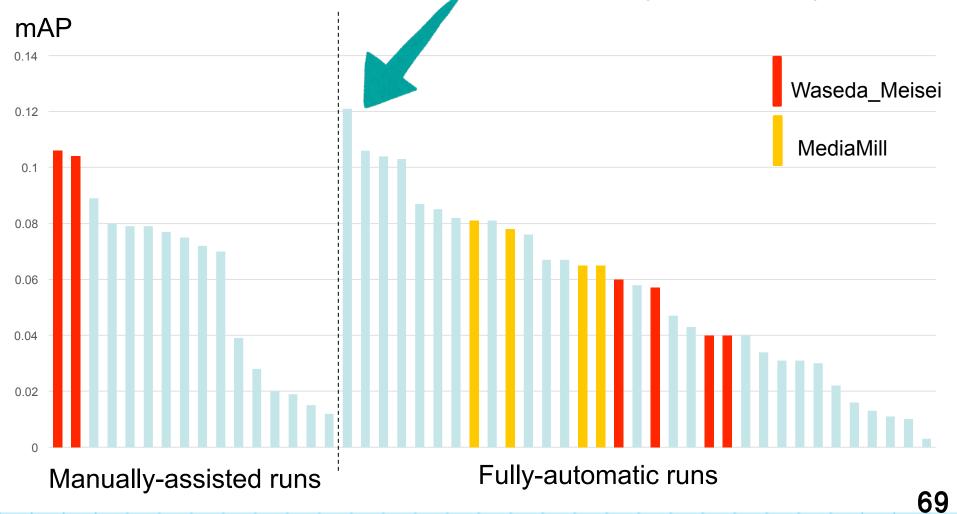
TREC Video Retrieval Evaluation Notebook Papers and Slides https://www-nlpir.nist.gov/projects/tvpubs/tv.pubs.org.html

## **2017 observations**

- Ad-hoc search is more difficult than simple concept-based tagging.
- Max and Median scores are better than TRECVID 2016 for both manually-assisted and fully-automatic runs
- Manually-assisted runs performed slightly better than automatic.
- Most systems are not real-time (slower systems were not necessarily effective)

### TRECVID 2018 results NEW

Some of the fully-automatic systems performed better than the concept-bank based manually assisted system!



- Concept bank based methods are good but will not be able to solve "AVS" task.
- Comprehend query phrases linguistically and utilize more human knowledge.
- Directly search for videos without decomposing the query.

We will discuss more about this task and new approaches at TRECVID workshop on 13 - 15 Nov.

We are waiting for new participants next year!