
Events

Cees Snoek

University	of	Amsterdam
The	Netherlands



Motivation:	Internet	of	things	that	video



Technology:	self-driving	cars



Forensics:	Analyzing	terrorist	behavior



Well-being:	elderly	monitoring

Chen	et	al.	MM	2004



Safety:	preventive	monitoring



What	is	an	event?

News	events:	earthquake,	abdication,	product	launch
Sport	events:	scoring	goal,	ace	serve,	slam	dunk
Social	events: concert,	debates,	exhibitions
Every	day	events:	interactions	of	people	and	objects

Working	on	sewing	projectRepairing	an	appliance

Birthday	partyGrooming	an	animal
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Goal

Board	trick

Assembling	a	shelter

Birthday	party

Recognize	and	explain	event	as	it	happens	in	video



This	lecture

We	study	event	recognition	
I.	Data,	data,	data
II.	Event	classification
III.	Event	retrieval



DATA,	DATA,	DATA
Prelude



The	early	years	1995-2010

Progress	was	slow	
– Lack	of	data
– Lack	of	benchmarks
– Lack	of	community
– Lack	of	urgency



Goalgle:	9	hrs of	test	video…
Snoek	et	al.,	ICME	2003



CCV:	Columbia	Consumer	Video	Database

http://www.ee.columbia.edu/ln/dvmm/CCV/



CCV	snapshot



TRECVID	benchmark

International	competition

Promote	progress	in	video	retrieval	research

Open	data,	tasks,	evaluation	and innovation

http://trecvid.nist.gov/



Internet video collections
Collection	Name	 Designated	Uses Target	sizes Annotation
Pilot 2010

Development	collection
Test	collection

1,723	clips
1,742	clips
(100	hours)

Clip	content	
annotation	for	both	
sets

Development	(DEV) 2011
Split	into	two	subsets:
(1)	Transparent	(DEV-T)
(2)	Opaque	(DEV-O)

2012-2015
(1)	and	(2)	merged	to	a	
single	training	collection

44K	clips,
(~	1400	
hours)

For	MED	‘11:	
Clip	content	
annotation	for	the	
transparent	subset
After	MED	‘11:
Clip	content	
annotation	for	the	
opaque	subset

Progress 2012-2015:	test	collection 120K	clips,
4000	hrs

No	clip	content	
annotation

Novel	1 2014:	test	collection 120K	clips,
4000	hrs.

No	clip	content	
annotation

Novel	2 2015:	test	collection 120K	clips,
4000	hrs.

No	clip	content	
annotation



The TRECVID MED ‘11 events

Process-Observed	Events
Attempting	a	board	trick
Feeding	an	animal
Landing	a	fish
Working	on	a	woodworking	project

Life	Events
Wedding	ceremony
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Process-Observed	Events
Changing	a	vehicle	tire
Getting	a	vehicle	unstuck
Grooming	an	animal
Making	a	sandwich
Parkour
Repairing	an	appliance
Working	on	a	sewing	project

Life	Events
Birthday	party
Flash	mob	gathering
Parade



Example	Event	Kit	



CLASSIFICATION
Part	I



FEATURE	ENCODING
Chapter	1

Several	slides	by:	Yu-Gang	Jiang



Solution	1:	Feature	encoding

Represent	video	as	low-level	feature	vector
– Image	features:	SIFT	variations,	deep	learning,	etc.
– Audio	features:	MFCC,	AUD,	etc.
– Text	features:	ASR,	OCR,	etc.
–Motion	features:	STIP,	dense	trajectories,	etc.

Good	recognition	accuracy,	no	interpretation
Y.G.	Jiang	et	al.	TRECVID10
P.	Natarjan et	al.,	CVPR12

Wang	et	al.,	ICCV13
and	many	others



Winner	TRECVID	2010



Contribution	per	modality

More	is	better,	feature	fusion	strong	fundament



Audiovisual	features



Bag-of-X	representation



Results



2011 event detection results

Easy:
Flash mob

Hard:
Grooming an 
animal

All	systems	rely	predominantly	on	bag-of-features,	
no	notion	whether	event	really	happened



2012	&	2013	winner:	Inria LEAR



2014	winner:	CMU

Winning	system	combined	many	multimedia	features,	
with	huge	computation	budget,	deep	learning	key?

Xu et	al,	CVPR	2015



2015	winner:	ImageNet-Shuffle	- UvA

Leverage	complete,	but	reorganized	ImageNet for	pre-training
Outperform	standard	networks,	maintain	benefits	of	fusion

Mettes et	al,	ICMR	2016

http://tinyurl.com/imagenetshuffle



Conclusion	on	feature	encodings
• The	combination	of	audio-visual	features	is	key	
for	good	video	event	recognition
– MBH	+	Fisher	vector	best	single	feature
– Best	single	feature	from	deep	convolutional	nets

• Many	start	to	explore	temporal	deep	learning
– 3D	convolutions	
– Recurrent	neural	networks
– …

Good	recognition	accuracy,	limited	interpretation



SEMANTIC	ENCODING
Chapter	2

Joint	work	with	Amirhossein Habibian &	Masoud Mazloom



Solution	2:	Semantic	encoding

Represent	video	as	concept	score	histogram
– Detectors	from	deep	learning,	Fisher	vectors,	etc.
– Annotated	examples	from	ImageNet,	Flickr,	etc.

Vocabulary	for	semantic	encoding	mostly	
driven	by	ad	hoc	concept	detector	availability.

Naphade et	al.	TMM02
Ebadollahi et	al.,	ICME06

Snoek	et	al.,	PAMI06
Gkalelis et	al.,	CBMI11
Merler et	al.,	TMM12

and	many	others



Semantic	encodings	for	video

1.	How	many	concepts?
2.	What	concept	types?
3.	Which	concepts?
4.	How	accurate?
5.	How	to	select?

Habibian et	al.,	CVIU	2014
Mazloom et	al.	TMM	2014



Experimental	setup

MED:	TRECVID	Multimedia	Event	Detection	2012
13,274	videos	(66%	train,	34%	test)
25	event	categories,	marriage	proposal,	grooming	animal,	etc.

CCV:	Columbia	Consumer	Video	
9,317	videos	(50%	train,	50%	test)
15	event	categories,	music	performance,	graduation,	etc.

Vocabulary	sampled	from	1,346	concept	detectors
Annotations	by	ImageNet Challenge11	and	TRECVID	SIN12
Color	Fisher	coding	with	spatial	pooling	and	linear	SVM



Concepts	categorized	by	type

Object

People

Animal

Scene

Action

Attribute



1.	How	many	concepts?	

More	is	better,	but	include	at	least	200
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MED dataset
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2.	What	concept	types?

Derive	the	vocabulary	concepts
Single:	Only	from	a	particular	concept	type?	
Joint:	From	various	concept	types?

Object	(670) Action	(34) Scene	(128) People	(78) Animal	(321) Attribute	(45)

Vocab. Single Joint Single Joint Single Joint Single Joint Single Joint Single Joint

MAP 0.259 0.279 0.067 0.076 0.142 0.168 0.082 0.123 0.158 0.239 0.063 0.082



2.	What	concept	types?
MED Object	(670) Action	(34) Scene	(128) People	(78) Animal	(321) Attribute	(45)

Vocab. Single Joint Single Joint Single Joint Single Joint Single Joint Single Joint

MAP 0.259 0.279 0.067 0.076 0.142 0.168 0.082 0.123 0.158 0.239 0.063 0.082

Small	difference Big	difference

CCV Object	(670) Action	(34) Scene	(128) People	(78) Animal	(321) Attribute	(45)

Vocab. Single Joint Single Joint Single Joint Single Joint Single Joint Single Joint

MAP 0.307 0.335 0.197 0.217 0.249 0.285 0.229 0.265 0.265 0.310 0.178 0.220

In	general,	a	diverse	vocabulary	is	better



Event
Animal	(321)

Single Joint

Attempting	board	trick 0.120 0.271

Feeding	animal 0.073 0.045

Landing	fish 0.323 0.36

Wedding	ceremony 0.162 0.388

Working	wood	working	project 0.116 0.167

Birthday	party 0.139 0.239

Changing	vehicle	tire 0.054 0.153

Flash	mob	gathering 0.415 0.475

Getting	vehicle	unstuck 0.294 0.338

Grooming	animal 0.146 0.127

Making	sandwich 0.07 0.176

Parade 0.126 0.275

Parkour 0.089 0.356

Repairing	appliance 0.104 0.259

Working	sewing	project 0.194 0.238

Attempting	bike	trick 0.129 0.392

Cleaning	appliance 0.029 0.058

Dog	show 0.555 0.512

Giving	directions	location 0.016 0.029

Marriage	proposal 0.018 0.05

Renovating	home 0.085 0.192

Rock	climbing 0.309 0.322

Town	hall	meeting 0.266 0.379

Winning	race	without	vehicle 0.088 0.138

Working	metal	crafts	project 0.019 0.038



Concept	correlations
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Semantic	encodings	for	video

1.	How	many	concepts?
2.	What	concept	types?
3.	Which	concepts?
4.	How	accurate?
5.	How	to	select?



3.	Which	concepts?

General/specific	concepts	are	identified	manually
General:	human,	vegetation,	outdoor	etc.
Specific:	salmon,	cheese,	sand	castle	etc.

Derive	the	vocabulary	concepts
Only	from	specific	concepts?
Only	from	general	concepts?
Mixture	of	specific	and	general	concepts?



3.	Which	concepts?

Specific	and	general	concepts	should	be	mixed

Vocabulary Specific General Mixture

MAP 0.094 0.117 0.130

Vocabulary Specific General Mixture

MAP 0.208 0.232 0.260

MED	dataset

CCV	dataset



Event Specific General Mixture
Attempting	board	trick 0.090 0.108 0.130
Feeding	animal 0.041 0.042 0.045
Landing	fish 0.113 0.107 0.139
Wedding	ceremony 0.071 0.14 0.164
Working	wood	working	project 0.083 0.065 0.073
Birthday	party 0.078 0.135 0.138
Changing	vehicle	tire 0.058 0.062 0.071
Flash	mob	gathering 0.301 0.284 0.337
Getting	vehicle	unstuck 0.195 0.246 0.282
Grooming	animal 0.064 0.079 0.081
Making	sandwich 0.059 0.089 0.119
Parade 0.073 0.203 0.161
Parkour 0.104 0.226 0.210
Repairing	appliance 0.111 0.098 0.101
Working	sewing	project 0.076 0.075 0.082
Attempting	bike	trick 0.044 0.08 0.09
Cleaning	appliance 0.125 0.092 0.123
Dog	show 0.219 0.178 0.23
Giving	directions	location 0.028 0.019 0.053
Marriage	proposal 0.013 0.017 0.025
Renovating	home 0.023 0.074 0.083
Rock	climbing 0.178 0.156 0.194
Town	hall	meeting 0.064 0.226 0.158
Winning	race	without	vehicle 0.102 0.102 0.117
Working	metal	crafts	project 0.040 0.021 0.036



4.	How	accurate?

How	important	is	the	concept	detector	accuracy?

Decrease	concept	detector	accuracies	to	observe	
how	event	detection	performance	responds

Approach:	Train	less	sophisticated	detectors

Habibian et	al.,	CVIU	2014



Approach:	Four	detector	settings

All	examples	/	ColorSIFT /	Spatial	Pyramids

30%	of	examples	/	ColorSIFT /	Spatial	Pyramids

30%	of	examples	/	SIFT	/	Spatial	Pyramids

30%	of	examples	/	SIFT



Train	less	sophisticated	detectors

Detectors 100% Examples
ColorSIFT
Spatial 
Pyramid

30% Examples
ColorSIFT
Spatial 
Pyramid

30% Examples
SIFT

Spatial 
Pyramid

30% Examples
SIFT

MAP 0.206 0.189 0.182 0.185

MED	dataset

CCV	dataset
Detectors 100% Examples

ColorSIFT
Spatial 
Pyramid

30% Examples
ColorSIFT
Spatial 
Pyramid

30% Examples
SIFT

Spatial 
Pyramid

30% Examples
SIFT

MAP 0.359 0.371 0.354 0.353

Habibian et	al.,	submitted

More	sophisticated	detectors	have	only	minor
influence	on	the	overall	event	recognition	accuracy.



Semantic	encodings	for	video

1.	How	many	concepts?
2.	What	concept	types?
3.	Which	concepts?
4.	How	accurate?
5.	How	to	select?



5.	Motivation

More	is	better,	but	include	at	least	200
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Example	for:	Landing	a	fish	in

A	vocabulary	of	400	concepts	is	more	accurate	than	using	all



Example	for:	Wedding	ceremony

A	vocabulary	of	500	concepts	is	more	accurate	than	using	all



Value	of	individual	concepts

Note	the	semantic	correspondence	between	
good	performing	concepts	and	events

Mazloom et	al.,	TMM	2014



Research	question	5.

Is	it	possible	to	learn	the semantic	encoding	
of	an	event	from	examples?



Idea

Formalize	subset	selection	as	importance	sampling

Cross-entropy	optimization
1.	Sample	semantic	subset
2.	Evaluate	semantic	subset
3.	Update	sampling	parameters	

Near-optimal	solution

Mazloom et	al.,	TMM	2014

Concept	vocabulary



All	concepts	(�)	vs selected	concepts	(*)

Encoding	based	on	selected	concepts	always	better

Mazloom et	al.,	TMM	2014

M
ED



Concept	subsets	are	descriptive

Font	size	correlates	with	importance



Failure	case

Why	is	an	‘Abacus’	descriptive	for	Birthday?

Example	training	examples	for	candle	and	abacus



Recommendations

For	event	recognition	using	semantic	encodings
1. Include	at	least	200	detectors
2. Diversity	of	concept	types	is	important
3. Both	the	general	and	specific	concepts	are	required
4. Concept	detector	accuracy	is	not	critical
5. A	descriptive	concept	subset	can	be	learned	from	examples

Amirhossein Habibian and	Cees	G.	M.	Snoek,	"Recommendations	for	Recognizing	
Video	Events	by	Concept	Vocabularies," Computer	Vision	and	Image	
Understanding,	vol.	124,	pp.	110-122,	2014.



RETRIEVAL
Part	II

Joint	work	with	Amirhossein Habibian &	Masoud Mazloom



Hypothesis

As	events	become	more	and	more	specific,	it	is	
unrealistic	to	assume	that	ample	examples	to
learn	from	will	be	commonly	available.



Goal



Feature	embedding	fails

Representing	videos	as	histograms	of	low-level	features

Problem:	demands	examples

[Jiang	et	al.,	TRECVID	2010]	[Natarajan	et	al.,	CVPR	2012]	[Wang	et	al.,	ICCV	2013]	and	many	others

Local 
descriptors

• Visual descriptors
•SIFT, HOG, GIST, …

• Video descriptors
•MBH, STIP, …

• Audio descriptors
•MFCC, AIM, …

Feature 
embedding

• Bag-of-words

• VLAD

• Fisher vector

•Audio-visual BoW

Deep	convolutional	neural	network



Solution

The	key	to	event	recognition	when	examples	are	
absent	is	to	have	a	lingual video	representation.	

Once	the	video	is	represented	in	a	textual	form,	
standard	retrieval	metrics	can	be	used



Event	recognition,	without	examples

Term 
extraction

Term	Vector

Video to 
lingual

Term	Vector

Text

Matching

Test	videos

Event	description

This	talk	Part	II



This	part:	three	lingual	representations

Concept	embedding

Tag	embedding

Video2vec	embedding



CONCEPT	EMBEDDING
Chapter	3



Concept	embedding
Representing	videos	as	histograms	of	concept	scores

Problem:	define,	annotate	and	train	concept	classifiers

[Ebadollahi et	al.,	ICME	2006]	[Merler et	al.,	TMM	2012]	[Habibian et	al.,	CVIU	2014]	and	many	others

Classification

• Attribute detection

• Concept detection

Local 
descriptors

• Visual descriptors
•SIFT, HOG, GIST, …

• Video descriptors
•MBH, STIP, …

• Audio descriptors
•MFCC, AIM, …

Feature 
embedding

• Bag-of-words

• VLAD

• Fisher vector

•Audio-visual BoW

Deep	convolutional	neural	network



Label	composition	trick

Expanding	the	labels	by	logical	operations
• AND,	OR,	…

Habibian et	al.	ICMR	2014



Label	composition	trick

Expanding	the	labels	by	logical	operations
• AND,	OR,	…

Habibian et	al.	ICMR	2014



Motivation

Expanding	the	vocabulary	for	free

Composite	concepts	can	be	easier	to	detect
• boat-AND-sea
• bear-AND-cage
• man-OR-woman

Composite	concepts	can	be	more	indicative	of		the	event
• bike-AND-ride	for	attempting	a	bike	trick

Habibian et	al.	ICMR	2014



Learning	composite	concepts
For	a	vocabulary	of	n	concepts,	there	are	Bn disjoint	
compositions

• Bell	number:	

• Not	all	of	them	are	useful

Which	concepts	should	be	composed	together?
• NP-hard	problem,	equivalent	to	set-partitioning
• Approximated	by	a	greedy	search	algorithm

Habibian et	al.	ICMR	2014



Qualitative	results

Top	ranked	videos	for	flash	mob	gathering
Most	dominant	concepts	in	the	video	representation

Habibian et	al.	ICMR	2014



Composite	concepts

Label	composition	leads	to	a	more	comprehensive	
concept	embedding	

Still	need	to	define,	annotate	and	train	concept	
classifiers

Greedy	search	algorithm	slow

Habibian et	al.	ICMR	2014



Discovering	concepts	from	the	web
Chen	et	al.	ICMR	2014
Wu	et	al.	CVPR	2014



Drawbacks	of	concept	discovery
Big	computational	effort

Many	concepts	are	rare,	insufficient	examples	to	
train	reliable	visual	classifiers

Selection	is	based	on	visual	prediction	accuracy	
only,	descriptiveness	is	ignored

Contextual	information	is	lost,	since	concepts	are	
learned	independently	by	binary	classifiers.



TAG	EMBEDDING
Chapter	4

Masoud Mazloom,	Xirong Li,	and	Cees	G.	M.	Snoek,	
TagBook:	A	Semantic	Video	Representation	without	Supervision	for	Event	Detection,
IEEE	Transactions	on	Multimedia,	in	press.



Idea

Embedding	based	on	freely	available	social	
tagged	videos	only

Without	the	need	for	training	any	intermediate	
concept	detectors



Inspiration
Xirong Li et al, TMM 2009



TagBook:	embedding	derived	from	social	tags

.	.	.

.	.	.
TagBook		=	{woman,	outdoor,	metal-crafts-project,	welding	machine,	man,	kitchen,…,	wall,	gym,	rock-climbing}

.	.	.

.	.	.

.	.	.

woman,	outdoor,	metal-crafts-project,	welding	machine

man,	kitchen,	metallic,	cleaning,	oven,	spray,	glasses,	

man,	snowboard,	snow,	board-trick,	

man,	climb-on,	wall,	gym,	rock-climbing	

Video	data Tags

Social-tagged	web	videos



TagBook dimension

It	is	advantageous	to	select	most	frequent	tags	in	TagBook



VIDEO2VEC	EMBEDDING
Chapter	5

Amirhossein Habibian,	Thomas	Mensink,	and	Cees	G.	M.	Snoek.	
Video2vec	Embeddings Recognize	Events	when	Examples	are	Scarce.	
IEEE	Transactions	on	Pattern	Analysis	and	Machine	Intelligence. In	press.
Previously	best	paper	ACM	Multimedia	2014.



Research	question
Can	we	learn	the	embedding	from	videos	and	their	stories?

Story	usually	highlights	the	key	concepts	in	video
Videos	and	stories	are	freely	available,	i.e.	YouTube

Video

Story



Multimedia	embeddings

Joint	space	where	xi W	≈	yi A
Explicitly	relate	training	W	and	A	from	multimedia

W	=	Visual	projection	matrix	 individual	term	classifiers	
A	 =	Textual	projection	matrix select/group	terms

Bike
Motorcycle

Stunt

Embedding

yixi

W A

[Rasiwasa et	al.,	MM	2010]	[Weston	et	al.,	IJCAI	2011]	[Akata et	al.,	CVPR	2013]	[Das	et	al.,	WSDM	2013]



Video2vec:	Embed	the	story	of	a	video

Design	criteria:	learn	W	and	A	such	that
Descriptiveness: preserve	video	descriptions
Predictability:	recognize	terms	from	video	content

Bike
Motorcycle

Stunt

yixi
Embedding

W Asi



Key	observation:	Compelling	forces

Descriptiveness	en	predictability	are	compelling



Why	is	this	important?

Grouping	terms:
Number	of	classes	is	reduced

Training	classifiers	per	group:
More	positive	examples	available	per	group

We	can	train	from	freely	available	web	data

87



Key	contribution:	Joint	optimization

Jointly	optimize	for	descriptiveness	and	predictability

Hyperparameter:	size	of	the	embedding	S
Ld Loss	function	for	descriptiveness
Lp Loss	function	for	predictability

Video2vec	connects	the	two	loss	functions

Figure 2: Dataflow for learning the VideoStory and
using it for event recognition and translation.

2. VIDEOSTORY FRAMEWORK
Our VideoStory framework contains three major parts,

schematically illustrated in Figure 2.

1. The VideoStory training, where we learn our multime-
dia embedding from a dataset consisting of videos with
descriptions. This training outputs two projection ma-
trices: a visual projection matrix W , and a textual
projection matrix A. The VideoStory representation
S is computed from the visual projection matrix W

and low-level video features.

2. The event classifier training, where we use o↵-the-shelf
SVMs to train classifiers on a dataset consisting of
videos with a few event labels. The videos are encoded
with our VideoStory representation.

3. The recognition and translation stage, where we eval-
uate the event classifiers, and use the semantics of our
representation to describe videos.

In this section we introduce the VideoStory embedding, its
design principles and how it is obtained by learning.

2.1 Objective Function
Using the notation summarized in Table 1, we will de-

scribe the objective function we minimize to obtain the Video-
Story representation. To learn the embedding we use a
dataset of videos, represented by low-level video features
X, and their descriptions, represented by binary term vec-
tors Y , indicating which terms are present in each video
description. While we use and emphasize low-level visual
features in this work, our approach is generic and can create
a VideoStory from any multimedia feature.

The aim of the VideoStory representation is to balance
two compelling forces:

1. Descriptiveness, to preserve the information encoded
in the video descriptions Y as much as possible, and

2. Predictability, to ensure that the VideoStory could be
e↵ectively recognized from visual video content X.

Therefore, we learn the VideoStory representation by both
objectives in a joint optimization framework.

Notation Description
N Number of videos
M Number of unique terms in descriptions
D Dimensionality of visual feature
k Dimensionality of VideoStory embedding
X 2 RD⇥N Matrix of low-level video features
Y 2 {0, 1}M⇥N Matrix of binary term vectors
W 2 RD⇥k VideoStory visual projection
A 2 RM⇥k VideoStory textual projection
S 2 Rk⇥N VideoStory embedding
xi,yi, si The column representing the i-th video

Table 1: Summary of notation.

The VideoStory representation is learned by minimizing:

LVS(A,W ) = min
S

Ld(A,S) + Lp(S,W ), (1)

where A is the textual projection matrix, W is the visual
projection matrix, and S is the VideoStory embedding. The
loss function Ld corresponds to our first objective for learn-
ing a descriptive VideoStory, and the loss function Lp cor-
responds to our second objective for learning a predictable
VideoStory. The VideoStory embedding S interconnects the
two loss functions. To the best of our knowledge this joint
embedding framework is novel.

Descriptiveness For the Ld function, we use a variant
of regularized Latent Semantic Indexing [38]. This objective
minimizes the quadratic error between the original video
descriptions Y , and the reconstructed translations obtained
from A and S:

Ld(A,S) =
1
N

NX

i=1

kyi �Asik22 + �a⌦(A) + �s (S), (2)

where  (·) and ⌦(·) denote regularization functions, and
�a � 0 and �s � 0 are regularizer coe�cients. We use
the squared Frobenius norm for regularization, which is the
matrix variant of the `2 regularizer, i.e., ⌦(A) = kAk2F =P

ikaik22 =
P

ij a
2
ij , the sum of the squared matrix elements.

Similarly for the VideoStory matrix  (S) = kSk2F.
The main di↵erence with regularized Latent Semantic In-

dexing [38] is that they used an `1 regularizer, ⌦(A) =P
ikaik1, which enforces sparsity in the textual projection

A. However, with our larger representation (typically we
use k between 256 and 1,024 in our experiments compared
to only k = 20 used in [38]) and fewer number of unique
terms (around 10K, compared to 100K), enforcing sparsity
is not necessary for good performance.
Note that many other textual embedding methods, such

as Sparse Coding and probabilistic Latent Semantic Index-
ing [12] can be formulated similar to Eq. (2), when appropri-
ate regularization functions ⌦(·) and  (·) are used. Further-
more, when the textual projection matrix A is constrained
such that each column has a single non-zero value, i.e., se-
lects a single term, our objective becomes very close to meth-
ods that select the best single term labels, such as [4].

Predictability The Lp function measures the occurred
loss between the VideoStory S and the embedding of low-
level videos features using W . Since the VideoStory S is
real valued, as opposed to a binary or multi-class encod-
ing, we can not rely on standard classification losses such as
the hinge-loss used in SVMs. Therefore, we define Lp as a
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Objective	1: The	Video2vec	embedding	should	be	descriptive

Essentially	latent	semantic	indexing	with	L2	rather	than	an	L1	norm

Video2vec	objectives:	descriptiveness

Original	transcriptions Reconstructed	terms Regularizers



Objective	2: The	Video2vec	embedding	should	be	predictable

Video2vec	objectives:	predictability

Video2vec	embedding Video	feature	embedding Regularizer



Video2vec:	Training
Set	of	videos	and	their	captions

Encode	video	features	xi
Any	feature	(combination)	will	do

Encode	video	descriptions	yi
Bag-of-words	of	terms
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Video2vec	Training

Video2vec
Algorithm

W

A

Video	and	descriptions



VideoStory46K	dataset

Videos	and	title	descriptions	from	YouTube
46K	videos,	19K	unique	terms	in	descriptions

Seeded	from	video	event	descriptions
Filters	to	remove	low	quality	videos

Available	for	download:	www.mediamill.nl

[Habibian MM	2014]



Video2vec	Training

Video2vec
Algorithm

W

A

Video	and	descriptions

Video2vec:	Training	(2)
Using	Stochastic	Gradient	Descent:

Choose	random	sample
Compute	sample	gradient	wrt objective

Update	parameters	with	step-size	η

regularized regression, similar to ridge regression:

Lp(S,W ) =
1
N

NX

i=1

ksi �W

>
xik22 + �w⇥(W ), (3)

where we use (again) the Frobenius norm for regularization
of the visual projection matrix W , ⇥(W ) = kW k2F, and �w

is the regularization coe�cient.

2.2 Learning Algorithm
To handle large scale datasets and state-of-the-art high-

dimensional visual features, e.g., Fisher vectors [32] on low-
level video features [37] or deep learned representations [19],
we employ SGD (Stochastic Gradient Descent) [5]. SGD
is an e�cient online procedure and converges fast to the
(global) minimum of a model. At each step, training with
SGD consists of (i) choosing a random sample from the
dataset consisting of a video and a description, (ii) comput-
ing the sample estimate of the gradient of the parameters in
the model, and (iii) updating the parameters in the direc-
tion of the gradient with step-size ⌘. The number of passes
over the datasets, often denoted as epochs, and the step-size
⌘ are hyper-parameters of SGD.

The VideoStory objective function, as given in Eq. (1),
is convex with respect to matrix A and W when the em-
bedding S is fixed. In that case, the joint optimization is
decoupled into Eq. (2) and Eq. (3), which are both reduced
to a standard ridge regression for a fixed S. Moreover, when
both A and W are fixed, the objective Eq. (1) is convex
w.r.t. S. Therefore we use standard SGD by computing the
gradients of a sample w.r.t. the current value of the param-
eters, and we minimize S jointly with A and W .

Lets denote a randomly sampled video and description
pair at step t by (xt,yt), and let st denote the current Video-
Story embedding of sample t. The gradients of Eq. (1) for
this sample w.r.t. A,W and st are given by:

rALVS = �2 (yt �Ast) s
>
t + �aA, (4)

rWLVS = �2 xt

⇣
st �W

>
xt

⌘>
+ �wW , and (5)

rstLVS = 2
h
st �W

>
xt �A

> (yt �Ast)
i
+ �sst. (6)

Our algorithm is summarized in Algorithm 1.
The e↵ect of joint learning the descriptiveness and the

predictability, becomes clear in Eq. (6), where both the tex-
tual projection matrix A and visual projection matrix W

contribute to learning the VideoStory embedding S. This
embedding S is subsequently used to obtain the textual pro-
jection A matrix, in Eq. (4), and the visual projection W

matrix, in Eq. (5). This leads to the VideoStory embed-
ding, which is both descriptive, by preserving the textual
information, and predictable, by minimizing the visual pre-
diction loss.

2.3 Using the VideoStory Embedding
The result of training our VideoStory embedding is the

visual projection matrix W and the textual projection ma-
trix A. These are used to encode a new video i into our
VideoStory representation si.

In the case that both a video xi and description yi are
given, we could obtain the semantic embedding by return-
ing si from Eq. (1), while keeping both A and W fixed.
However, in practice most videos are not provided with a

input : X, Y , k, ⌘ (step-size), m (max-epochs)
output: W and A

A, W , and S  random (zero-mean, unit variance)

for e 1 to m do
for i 1 to N do

Pick a random video-description pair (xt,yt)
Compute gradients w.r.t. A,W and st

Update parameters:

A  A� ⌘trALVS see Eq. (4)

W  W � ⌘trWLVS see Eq. (5)

S  st � ⌘trstLVS see Eq. (6)
end

end
return: W and A

Algorithm 1: Pseudocode for learning VideoStory

description. Therefore, we use:

si = W

>
xi, (7)

to construct our VideoStory representation from the low-
level video features xi. Given an embedded video si, we
can translate a video by:

ŷi = Asi, (8)

where the terms with the highest values are most relevant
for this video.

3. HARVESTING VIDEOS AND THEIR DE-
SCRIPTIONS FROM THE WEB

Rather than describing the video content manually, we opt
to harvest both videos and descriptions from the web. Video
sharing web sites, such as YouTube and Vimeo, provide a
rich and varied source of videos and user provided descrip-
tions, such as their title captions and comments. Although
video title captions do not necessarily correspond to the vi-
sual content of the videos, we will show that by harvesting
a large number of these captioned videos and applying a set
of quality filters we obtain reliable video descriptions.
We start from an initial pool of descriptions, as the col-

lection seeds, and iteratively collect videos and their title
captions from YouTube. For the collection seeds, we rely
on 3,000 sentence descriptions from the training partition
of the NIST TRECVID HAVIC corpus [33]. Then each de-
scription within the pool is queried to YouTube and the
25 most relevant videos are retrieved, based on YouTube’s
textual similarity search. Every retrieved video is passed
through a set of quality filters. The videos which pass all
the filters are added to the collection and their title captions
are added to the description pool. We iteratively repeat this
procedure until enough videos are collected. We will first de-
tail our quality filters before providing the statistics of our
harvested video and description dataset.

3.1 Quality Filters
Event Filter Events are generally described by their ac-

tors, actions, and possible involved objects [10]. Hence we
assume that a description of an event video should contain
actors, actions and objects. For this purpose, we parse the
grammatical structure of title captions using a probabilistic

[Bottou ICCS	2010]



Video2vec	at	work

3.	Cosine	distance	for	matching	

1.	Project	visual	features

2.	Translate	to	text



Video2vec	predicted	terms



State-of-the-art	event	retrieval
Authors Published mAP
Habibian et al. ICMR	2014 6.4
Ye	et	al.	 MM	2015 9.0
Chang	et	al. IJCAI 2015 9.6
Mazloom et	al. ICMR	2015 11.9
Wu	et	al. CVPR	2014 12.7
Jiang	et	al. AAAI	2015 12.9
Mazloom et	al. TMM	2016 12.9
Liang	et	al. MM	2015 18.3
Habibian et	al.	 TPAMI	2017 20.0



State-of-the-art	event	retrieval
Authors Published mAP
Concept	embedding ICMR	2014 6.4
Ye	et	al.	 MM	2015 9.0
Chang	et	al. IJCAI 2015 9.6
Mazloom et	al. ICMR	2015 11.9
Wu	et	al. CVPR	2014 12.7
Jiang	et	al. AAAI	2015 12.9
Tag	embedding TMM	2016 12.9
Liang	et	al. MM	2015 18.3
Video2vec	embedding TPAMI	2017 20.0



State-of-the-art:	event	classification

Authors Published mAP
Habibian et	al. MM	2014 19.6
Nagel	et	al.	 BMVC	2015 21.8
Li	et	al. ICCV 2013 23.7
Tang	et	al. CVPR	2012 26.8
Sun	et	al. CVPR	2014 28.7
Chang	et	al. MM	2015 30.9
ImageNet-shuffle ICMR	2016 34.8
Video2vec	embedding TPAMI	2017 37.1



Conclusions

Event	recognition	without	examples	demands	lingual	
representation
Concept	embedding	has	too	many	limitations
Tag	embedding	is	simple,	yet	surprisingly	effective
Video2vec‘s	descriptiveness	&	predictability	is	appealing

99www.ceessnoek.info


