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Abstract—This paper presents our system developed for Ad-

hoc Video Search (AVS) task in TRECVID 2019. Our system is

based on embedding that maps visual and textual information

into a common space to measure the relevance of each shot to a

topic. We devise three embedding models built on two sources of

training data, MS-COCO [1] and Flickr 30k [2]. Image feature

extractors and region detector internally used in these models are

pre-trained on ImageNet [3] and Visual Genome [4], respectively.

The following five variants of our system were submitted:

1) F M C D kindai kobe.19 1: This run is an ensemble of

three embedding models. The first and second models

are respectively trained on MS-COCO and Flickr 30k

to perform different coarse-grained embeddings between

frames and a topic. The last model forms fine-grained

embedding between regions in frames and words in a topic.

2) F M C D kindai kobe.19 2: This run is the same to

F M C D kindai kobe.19 1 except that the fine-grained

embedding model normalises regional features.

3) F M C D kindai kobe.19 3: This run only uses the fine-

grained embedding model without the normalisation.

4) F M C D kindai kobe.19 4: This run is an ensemble of

only the two coarse-grained embedding models.

5) F M N D kindai kobe.19 5: This run is the same to

F M C D kindai kobe.19 3 except the fine-grained em-

bedding model using the normalisation.

The MAPs of F M C D kindai kobe.19 3, F M C D kindai
kobe.19 4 and F M N D kindai kobe.19 5 are 0.080, 0.059 and

0.081, respectively. This indicates that fine-grained embedding

is much more effective than coarse-grained one. Considering

that both F M C D kindai kobe.19 1’s and F M C D kindai
kobe.19 2’s MAPs are 0.087, the ensemble of coarse-grained

and fine-grained embeddings leads to small performance im-

provements, compared to F M C D kindai kobe.19 3 and F M
C D kindai kobe.19 5. This means that the performances of

the former are mainly owing to the latter. Finally, F M C D
kindai kobe.19 1 and F M C D kindai kobe.19 2 are ranked at

the fifth position in terms of teams participating in the fully

automatic category, and our runs achieve the best MAPs for

three topics in this category.

I. INTRODUCTION

We are continuously participating in TRECVID to make an
objective performance comparison between our system and
systems developed all over the world [5]. Until last year our
system for Ad-hoc Video Search (AVS) task was based on the
concept-based approach that retrieves shots based on detection
results of concepts related to a topic [6], [7], [8]. Two crucial
processes in this approach are “concept selection” and “result
fusion”. The former selects concepts related to a topic, and

the latter generates the final retrieval result by aggregating
detection results of the selected concepts. However, it is
difficult to devise concept selection and result fusion processes
that are universally applicable for various topics. Some reasons
are as follows: For concept selection, it is needed to consider
concepts implicitly related to a topic and errors in concept
detection. For result fusion, different approaches are needed
depending on the relation among concepts and sentence struc-
ture of a topic.

To avoid such problematic concept selection and score
fusion, this year our system is based on embedding that maps
data in different modalities into a common space, so that
their similarity can be directly computed. In our case, visual
features of a shot and textual features of a topic’s description
are projected into a common space, where their similarity is
used as the relevance score for the retrieval process. In other
words, shots that have the highest similarities to the topic in
the common space are retrieved.

In particular, two types of embeddings are considered in
our system. The first is coarse-grained embedding that maps
frames in a shot and the textual description of a topic into a
common space [9]. This is useful for evaluating the overall
relevance of the shot to the topic. However, coarse-grained
embedding loses details in the shot and topic because it aims
to find rough correspondences between shots and topics in
the common space. Thus, we adopt as the second type fine-
grained embedding that builds a common space to characterise
correspondences between regions in frames of a shot and
words in the textual description of a topic [10]. This is useful
for examining whether the shot satisfies detailed requirements
of the topic, such as object numbers, object types (e.g., male
or female) and object characterisitcs (e.g., colour and pose).
Finally, our system fuses the results by coarse-grained and
fine-grained embeddings into a single result, where a shot and
topic are matched based on both of their overall and detailed
characteristics.

II. OUR AVS SYSTEM

This section presents our AVS system that first generates
retrieval results by independently employing coarse-grained
and fine-grained embeddings. Then, these results are fused
into the final result where, for each shot, the relevance scores



computed by coarse-grained and fine-grained embeddings are
simply summed up. Each of embeddings is detailed below.

A. Coarse-grained Embedding

Fig. 1 summarises our coarse-grained embedding method
that is based on Visual-Semantic Embedding (VSE++) pro-
posed in [9]. First of all, VSE++ is trained on a dataset
consisting of image-caption pairs, each of which represents an
image and caption that are relevant to each other. This kind
of pair is called positive pairs, while every pair of image and
caption that are irrelevant to each other is called negative pair.
After training of VSE++ is finished, it is applied to frames in
a shot and the textual description of a topic.

Fig. 1. An overview of our coarse-grained embedding method VSE++

As depicted in the top-right of Fig. 1, ResNet152 [11]
trained on ImageNet [3] is used to extract a 2048-dimensional
image feature from an image. Then, this feature is transformed
into a 1024-dimensional feature via a Fully-Connected (FC)
layer. Also, the top-left of Fig. 1 illustrates that each word in
a text caption is encoded into a 300-dimensional feature using
a word embedding layer. Subsequently, Gated Reccurrent Unit
(GRU) is used to aggregate such features for all words into
a single 1024-dimensional feature by considering the order
of these words. In this framework, VSE++ optimises the FC
layer in the image side and the word embedding layer and
GRU in the text side, so that similar 1024-dimensional features
are generated for images and captions in positive pairs, while
producing dissimlar features for negative pairs. That is, images
and captions in positive pairs are close to each other in the
1024-dimensinal common space, while those in negative pairs
are distant from each other.

In the optimisation described above, VSE++ uses a triplet
loss function to pay special attention to “hard” negative pairs
each including an image and caption, which are irrelevant
to each other but are located closely in the common space.
VSE++ attempts to make images and captions in such hard
negative pairs projected distant from each other in the common
space. This is very useful for the retrieval process because
images in hard negative pairs are nothing except for false
positives, and frames in shots similar to those false positives
become to be ranked at lower positions in a retrieval result.

B. Fine-grained Embedding
Stacked Cross Attention Network (SCAN) proposed in [10]

is adopted for fine-grained embedding. Fig. 2 illustrates an
overview of SCAN which is firstly trained on a dataset
containing positive and negative pairs, and then used for shot
frames and topic’s textual description, similar to VSE++. As
shown in the top-right of Fig. 2, an image is analysed to extract
k “salient regions” (k = 36 in our case), each of which is likely
to include a concept with an attribute, such as “blue water”,
“black hair”, or “floral dress”. To extract salient regions, we
employ the bottom-up attention model [12] that is imple-
mented with Faster R-CNN based on ResNet101 backbone
and trained on Visual Genome dataset [4]. As a result, each
of k regions is represented by a 2048-dimensional feature and
transformed into a 1024-dimensional feature via an FC layer.
On the other hand, the top-left of Fig. 2 shows the extraction of
a 1024-dimensional feature for each word in a caption [10]:
First, each word is encoded into a 300-dimensional feature
using a word embedding layer, and then is represented by two
1024-dimensional features using a bi-directional GRU. Here,
the first and second features are obtained by the forward and
backward GRUs in the bi-directional GRU, respectively. The
final feature for the word is computed as their average.

Fig. 2. An overview of our fine-grained embedding method SCAN



After the aforementioned feature extractions, n words in a
caption C and k regions in an image I are now projected into
the 1024-dimensional common space. SCAN aims to proba-
bilistically make correspondences between words and regions
through the attention mechanism where a pair of word and
region relevant to each other gets a high attention. Specifically,
the attention ↵ij between the i-th region (1  i  k) and the
j-th word (1  j  n) is computed as follows:

↵ij =
exp(�1sij)Pk
i=1 exp(�1sij)

(1)

where sij is the normalised cosine similarity between the
feature ej of the j-th word and the feature vi of the i-th
region (see [10] for more details). And, �1 is a hyperparameter
to control the balance of attentions over k regions. Eq. (1)
represents a probability of how relevant the i-th region is to the
j-th word. Then, the “word-level” relevance of how suitable
k regions in I are for the j-th word is defined as follows:
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That is, avj is the average of regional features weighted by
their attentions to the j-th word. The word-level relevance
R(ej , avj ) is calculated as the cosine similarity between avj and
ej . The final relevance R(C, I) between C and I is obtained
by LogSumExp pooling below:
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where �2 is a hyperparameter to control the balance of word-
level relevances for n words in C. SCAN optimises the
FC layer in the image side and the word embedding layer
and bi-directional GRU in the caption side, so that R(C, I)s
for positive pairs and those for negative pairs become high
and low, respectively. This accordingly allows the attention
mechanism to estimate high ↵ij if the i-th region is relevant
to the j-th word, and low ↵ij for the other region-word pairs.

III. EXPERIMENTS

This section provides the experimental results of our
embedding-based AVS system. Some implementation details
are firstly described, and then the results and a discussion
about them are given.

A. Implementation Details
For coarse-grained embedding, two types of VSE++ are

used, the one named “VSE++M” is trained on MS-COCO
dataset [1] and the other termed “VSE++F” is built on Flickr
30k dataset [2]. For each shot, VSE++M and VSE++F are
applied to the NIST-provided keyframe and 10 frames that
are equi-distantly sampled over time. Assuming the case of
VSE++M, it is used to encode the keyframe and 10 frames into
1024-dimensional features, which are subsequently aggregated
into a single 1024-dimensional feature by average pooling.
Meanwhile, using VSE++M, the textual description of a topic

is encoded into a 1024-dimensional feature. Afterwords, shots
are ranked by computing the cosine similarity between the
feature of each shot and the one of the topic. Finally, the
retrieval result by VSE++M is obtained as a set of 1000
shots that have the highest similarities to the topic. The same
procedure is used to obtain the retrieval result by VSE++F.
Lastly, the final result by coarse-grained embedding is obtained
by fusing the results with VSE++M and VSE++F. Here, the
overall similarity (relevance) of each shot to the topic is simply
the sum of the cosine similarities computed in VSE++M and
VSE++F.

For fine-grained embedding, SCAN is trained on MS-COCO
dataset [1]. Because of its expensive computational cost, only
the keyframe of each shot is processed. Furthermore, due to
the GPU memory limitation, salient regions are extracted from
each keyframe that is scaled to make the longer side (width
or height) 480 pixels. SCAN is used to make correspondences
between words in the text description of a topic and salient re-
gions in the keyframe of a shot. Then, the relevance of the shot
to the topic is computed using Eq. (3). Shots are ranked based
on their relevances and 1000 shots with the highest relevances
form a retrieval result. Finally, the fusion of retrieval results
by coarse-grained and fine-grained emebeddings is done by
simply summing the relevances computed by them.

Based on the above-mentioned fusion approaches, the five
submitted runs are configured as follows:

1) F M C D kindai kobe.19 1 is an ensemble of
VSE++M, VSE++F and SCAN.

2) F M C D kindai kobe.19 2 is an ensemble of
VSE++M, VSE++F, and SCAN where the feature vi of
the i-th region is L2-normalised.

3) F M C D kindai kobe.19 3 is comprised only of
SCAN to examine the effectiveness of fusing it with
coarse-grained embedding (VSE++M and VSE++F).

4) F M C D kindai kobe.19 4 is an ensemble of
VSE++M and VSE++F to compare the performance of
coarse-grained embedding to the one of fine-grained
embedding (SCAN).

5) F M N D kindai kobe.19 5 is comprised only of
SCAN with L2-normalisation, and its purpose is the
same to F M C D kindai kobe.19 3.

B. Results
Fig. 3 shows the ranking of 37 AVS methods developed

in the fully automatic category. Each bar represents the
MAP of one method, and the five red bars represent the
MAPs of our submitted runs. As can be seen from Fig. 3,
F M C D kindai kobe.19 1 and F M C D kindai kobe.
19 2 are ranked at the 14-th and 15-th positions, respectively
(both runs actually get the same MAPs 0.087). These positions
correspond to the fifth position among nine teams participating
in the fully automatic category. In Fig. 3, the MAPs of
F M C D kindai kobe.19 3, F M C D kindai kobe.19 4
and F M N D kindai kobe.19 5 are 0.080, 0.059 and 0.081,
respectively. This indicates that fine-grained embedding
based on SCAN (either using or not-using L2-normalisation)



Fig. 3. Ranking of AVS methods developed in the fully automatic category with respect to their MAPs.

Fig. 4. Comparison between the best AP and APs of our submitted runs for each of 30 topics in the fully automatic category.

is much more effective than coarse-grained embedding
based on the ensemble of VSE++M and VSE++F1. One
characteristic example showing the superiority of fine-
grained embedding over coarse-grained one is topic 636
“Find shots of a man and a baby both visible”, for which
the former appropriately retrieves shots including both of
man’s and baby’s appearances, while the latter retrieves
many shots only including man’s or baby’s appearance. In
addition, F M C D kindai kobe.19 1’s and F M C D
kindai kobe.19 2’s MAPs (both are 0.087) demonstrate
the effectiveness of an ensemble of coarse-grained and
fine-grained embeedings. But, the improvement is only 0.006
compared to F M N D kindai kobe.19 5’s MAP 0.081. This
reveals the significant contribution of fine-grained embedding
to the ensemble result.

Finally, for each of 30 topics, Fig. 4 shows the comparison
between the best AP marked by cross and the APs of our
five submitted runs marked by circle. The three red circles
indicates that our submitted runs achieve the best APs for the
corresponding three topics.

IV. CONCLUSION AND FUTURE WORK

This paper introduced our AVS system that is an ensemble
of coarse-grained embedding VES++ and fine-grained em-

1Our preliminary experiment showed that the ensemble of VSE++M and
VSE++F is better than only using VSE++M or VSE++F.

bedding SCAN. The results show the effectiveness of the
ensemble, to which fine-grained embedding has a much more
contribution than coarse-grained embedding. This is also sup-
ported by their individual performances, that is, fine-grained
embedding is much more accurate than coarse-grained one.

Based on the obtained results, we plan to put a more focus
on fine-grained embedding in the future. Specifically, this
embedding currently takes very long time (about 13.3 hours)
to finish the retrieval for a tpoic. One reason is that matching
between regions and words is exhaustively performed for all
shots, most of which are clearly irrelevant to the topic. Thus,
we will develop a fast matching method that efficiently filters
out many irrelevant shots by considering the structure of the
topic’s textual description and the relation among regions.
This may also lead to a performance improvement, because
general meanings like phrases can be matched with regions.
Another future work will address how to deal with the “out-of-
vocabulary” problem. Words in textual descriptions of some
topics do not exist in neither MS-COCO’s nor Flickr 30k’s
vocabulary. Only regarding such words as “unknown words”
yields a poor retrieval performance. To overcome this, we
plan to exploit Web images annotated with captions including
unknown words.
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