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Abstract

Activity detection in surveillance videos is a challenging
problem due to multiple factors such as large field of view,
presence of multiple activities, varying scales and view-
points, and its untrimmed nature. The requirement of pro-
cessing the surveillance videos in real-time makes this more
challenging. In this work, we propose a real-time online
system to perform activity detection on untrimmed surveil-
lance videos. The proposed system consists of three stages:
first we detect tubelets with activities, then classify them,
and finally merge them to generate spatio-temporal activ-
ity detections. We propose a localization network which
takes a video clip as input and makes use of feature pyra-
mid, multi-layer loss, and atrous convolutions to address
the issue of multiple scales and detect small activities in
terms of tubelets. The online processing of videos at a clip
level drastically reduces the computation time in detecting
activities. The detected tubelets are assigned activity class
scores and merged together using our proposed Tubelet-
Merge Action-Split (TMAS) algorithm to form action tubes.
The TMAS algorithm efficiently connects the tubelets in an
online fashion to generate spatio-temporal detections which
are robust against varying length activities. We perform our
experiments on the DIVA (Deep Intermodal Video Analyt-
ics) dataset and demonstrate the effectiveness of the pro-
posed approach in terms of speed (⇠100 fps) and perfor-
mance with state-of-the-art results. The code and models
will be made publicly available.

1. Introduction

Deep convolutional neural networks have achieved im-
pressive action classification results in recent years [27, 4,
28]. Similar advancements have been made for the tasks of

Figure 1. Top: Two Sample frames from different scenes of the
DIVA dataset showing variation in perspective, scale and field-of-
view. Bottom: Sample frames from the AVA dataset [10] (left)
and from the THUMOS’14 dataset [13] (right). The DIVA dataset
contains a greater number of concurrent actions as well as a greater
variety of action scales (both spatially and temporally).

action detection in trimmed videos [14, 26, 7] and temporal
action localization in untrimmed videos [32, 21]. However,
these improvements have not been transferred to spatio-
temporal action detection in untrimmed videos; current
computer vision systems have yet to achieve high perfor-
mance on this difficult task.

Action detection in untrimmed security videos poses
multiple challenges. Surveillance videos comprise of mul-
tiple viewpoints and contain several actors performing mul-
tiple actions concurrently. These actors have varying scales
and tend to be extremely small relative to the video frame,
which makes detection of small activities extremely chal-
lenging. These challenges make it difficult to extend ex-
isting methods to detect actions in the untrimmed security
videos found in the DIVA (Deep Intermodal Video Analyt-



ics) dataset [19]. Current methods are trained and evalu-
ated on datasets which contain some, but not all of these
challenges. For example, THUMOS’14 [13] is comprised
of untrimmed videos, but each video contains only one or
two actors performing the same action. The AVA dataset
[10] contains multiple actors and actions, but each video
is trimmed. Figure 1 shows sample frame from the DIVA
dataset and compares them with frames from other action
detection datasets.

In this work, we focus on untrimmed surveillance videos
and propose an online real-time system for spatio-temporal
action detection. Since activities in untrimmed videos can
vary in length, it is necessary to handle both short, atomic
activities, like opening a door or exiting a vehicle, as well as
long, repetitive actions like walking or riding. To this end,
our pipeline processes videos in an online fashion: it local-
izes and classifies short action tubelets. Our Tubelet-Merge
Action-Split (TMAS) algorithm, merges these tubelets into
action-agnostic tubes of varying length and splits the tubes
into a set of final spatio-temporal action predictions. By
classifying short tubelets and merging them into action
tubes, our system is able to detect both atomic and repet-
itive actions.

Our action localization module proposes pixel-level ac-
tion localizations for a short video clip. This allows our
system to generate action tubelet proposals without the use
of frame-based object detectors. Frame-based object de-
tection systems [9] have two main issues: 1) processing
each frame independently requires large amounts of com-
putation, which reduces the overall speed of the system and
leads to temporally inconsistent detections between adja-
cent frames, and 2) all objects within the frame are detected,
even those which are not performing actions. Our action
localization module processes multiple frames simultane-
ously and only produces tubelets which correspond to pos-
sible actions within the video. This results in temporally
consistent localizations as well as a reduction in the num-
ber of proposals which drastically increases the speed of
the overall system. Due to our localization network and the
overall system’s online processing of videos, inference is
performed at ⇠100 frames per second, greatly exceeding
the speed of contemporary action detection systems.

Our contributions are as follows:

• We propose a real-time online system that performs
spatio-temporal action detection in untrimmed surveil-
lance videos at ⇠100 frames per second.

• We propose a novel action localization network to de-
tect activity agnostic tubelets which significantly re-
duces the processing time of the system.

• The proposed TMAS tubelet merging algorithm effi-
ciently connects the tubelets in an online fashion and

produces spatio-temporal detections which are consis-
tent across time as well as robust against varying length
activities.

We evaluate the proposed approach on the DIVA (Deep
Intermodal Video Analytics) dataset and obtain state-of-the-
art results in terms of both speed and performance.

2. Literature Review

Convolutional Neural Networks (CNN) have been stud-
ied for video analysis and applied successfully for the action
recognition problem [27, 4]. Earlier approaches fuse 2D
frame features to extract temporal information[15], while
recent works mostly apply 3D convolution to extract spatio-
temporal features simultaneously [27, 4, 8, 29]. The work
in [8, 25] use two stream network architectures to further
exploit temporal dependencies.

Most action classifiers expect short trimmed videos
but this is unrealistic for action recognition in real world
surveillance videos. Predicting the temporal extents of ac-
tions is necessary for reliable recognition. In [21], a new
layer is proposed to temporally localize activities in videos
of MultiThumos dataset [32]. They represent actions as
combinations of Gaussian distributions, which are predicted
by their temporal convolution layer. Another major prop-
erty of real world videos is that multiple actions can oc-
cur within the same scene. Most works on spatial action
detection rely on a region proposal network [23] to detect
multiple objects in each frame and combine them tempo-
rally to generate action tubelets [31, 20]. However, this ap-
proach becomes computationally inefficient as the number
of proposals grows larger, making it unsuitable for real time
methods. In [12], a 3D CNN network efficiently predicts
frame-wise background-foreground segmentation map and
extrapolates the action tubes. Duarte et al.[7] proposes a
capsule based action detection network which segments and
recognize actions jointly.

Spatio-temporal action detection in untrimmed videos
requires more complex systems than aforementioned ap-
proaches. In [9], a frame level object detection and opti-
cal flow based model is proposed to solve spatio-temporal
action detection for DIVA [19] dataset. They apply hierar-
chical clustering on all detected object regions in a video to
obtain tube proposals and use optical flow to perform action
classification. This approach is computationally expensive
and not suitable for online processing. Our framework uses
a 3D CNN network for spatio-temporal action segmenta-
tion which produces temporally consistent predictions and
a fewer number of proposals. Additionally, our system pro-
cesses videos in an online fashion without using computa-
tionally expensive methods (region proposal network, opti-
cal flow) and achieves better performance in real-time.
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3. Methodology

3.1. Overview

The proposed system takes in a video clip as input and
detects all activities in the form of tubelets. The system first
operates on entire clip to spatio-temporally localize action
tubelets. Once we extract potential tubelets, our classifica-
tion system identifies all possible activities occurring within
each tubelet. These action predictions are then fed into
our TMAS system, which simultaneously filters and com-
bines them into accurate and consistent action tubes. As an
end result, we obtain spatio-temporal action detections over
long untrimmed videos in an online real-time process. The
following sections describe the different components of our
system.

3.2. Localization Network

The tube extraction process is the first step in the
pipeline, responsible for extracting all action tubes from the
untrimmed video input. Localizing action regions both tem-
porally and spatially is vital for the classification task as the
length and location of action is unknown beforehand. Fur-
thermore, each action tube could comprise of multiple ac-
tors performing multiple actions concurrently. This requires
actor and action agnostic tube extraction.

As shown in Figure 2, first we divide the untrimmed
videos into smaller clips, which are then forwarded into
the localization network. Following an encoder-decoder ap-
proach, the network produces segmentation masks for ac-
tion regions, each of which represents an action tubelet.
These tubelets are then individually processed by subse-
quent components of our system. Since this bottom-up seg-
mentation is performed for multiple frames simultaneously,
we reduce the time taken to localize multiple actions within
a video clip.

The proposed localization network uses an encoder-
decoder structure, and extracts class-agnostic action fea-
tures which can be used to generate segmentation masks;
this requires an effective feature extractor as an encoder. To
this end, we utilize a 3D convolution based encoder, I3D
[4], to learn spatio-temporal features required for activity
localization.

In the decoder, we use extracted action features to seg-
ment regions from the original input which contain activi-
ties. Depending on the task, this segmentation can be coarse
(patches of regions) to fine grained (pixel level). We opt
to produce relatively fine grained segmentations, keeping
a balance between separable action tubes and a reasonable
memory utilization. Following recent works in image seg-
mentation [5, 6, 18] and video segmentation [7, 12], we
use a decoder structure which combines transpose convo-
lutions and upsampling. Stacking many transpose convo-
lution layers is memory intensive and adds many parame-

ters to the decoder, so we interleave upsampling operations
to interpolate features. This results in a shallow decoder
network, which prevents over-parameterization and avoids
overfitting. Further architectural details of the localization
network are presented in the supplementary materials.

Skip Connections: It is difficult to produce fine grained
pixel level segmentations using features which have been
spatially down-sampled by the encoder. To obtain these
fine grained segmentations one would need a deep, mem-
ory intensive decoder. To circumvent this we pass low level
features from various layers of encoder directly to corre-
sponding layers of the decoder network, which has been
found effective for image segmentation [18, 6]. This al-
lows the decoder network to reincorporate essential features
that were lost during encoding process, which results in im-
proved pixel level segmentations.

Feature Pyramids: The objects present in surveillance
videos have varying scale. Therefore, using information
from layers with different feature resolutions helps in seg-
menting objects of different sizes. The authors in [6, 18]
have recently shown that building feature pyramids from
various layers, at different scales, aids in learning contex-
tual information. Motivated by this, we stack features from
various decoder layers (through upsampling) to obtain fea-
ture representations at different scales.

Atrous Convolution: Having contextual information for
each pixel aids in the process of learning richer features for
fine grained segmentation. Since conventional convolutions
have a limited receptive field, they are unable to learn this
contextual information without incurring a heavy memory
overhead. To address this, we apply atrous convolution,
with different receptive windows, on our final feature rep-
resentation. Atrous convolution applies a convolution op-
eration with dilated kernels centered around a pixel, which
effectively increases the receptive field. We apply dilation
at multiple rates to infer contextual relations among pixels
with varying distances. The authors in [6] utilize atrous con-
volution for encoder-decoder based segmentation and ob-
served improved performance.

Multi Layer Loss: The final output of our localization
network is a segmentation mask where each pixel is as-
signed a probability of being a part of an action. To train
the network, we compute a Binary Cross Entropy (BCE)
loss, where each pixel can have a probability between zero
(no activity) and one (activity). As our network is deep,
only calculating the loss at the final layer affects the conver-
gence time and the gradient update values for earlier layers.
Hence, we apply the segmentation loss at multiple decoder
layers, which improves the features learned in multiple lay-
ers and allows for more distributed backpropagation.

For a layer m with N total pixels, the loss is given as:

Lm(ŷ, y) = �
1

N

NX

i=0

[yilog(ŷi) + (1� yi)log(1� ŷi)] (1)
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Figure 2. Overview of the proposed system for action detection in untrimmed videos. An untrimmed video is processed clip by clip and fed
into the localization network, producing localization masks. Tubelet extraction produces tubelets for each clip, which are then classified
and passed to our TMAS system. The classified tubelets are merged to create action-agnostic tubes, from which individual spatio-temporal
action-specific detections are obtained.

where ŷi are predicted probability score of the pixel belong-
ing to an activity and yi are the ground truth labels of the
pixels.

The combined loss for all M layers in the multi layer
loss is given by:

Lloc =
MX

m=1

Lm (2)

Tubelet Extraction: The segmentation output for each
clip is a probability mask which isolates potential action
tubes. To obtain individual tubelets from this segmentation
output, we threshold the output to create a binary mask fol-
lowed by spatio-temporal connected component extraction.
The connected component process will generate tubelets for
all spatially and temporally linked pixels.

3.3. Tubelet Classification

The next step in our proposed system is tubelet classifi-
cation. Our action classification network is a multi-label
prediction network, which classifies the actions present
within each tubelet. We treat this as a multi-label classi-
fication problem because actors can perform multiple ac-
tivities simultaneously. For example, an actor can perform
the actions Riding and activity carrying at the same time.
We use a 3D-Convolution based deep learning model [11]
initialized with pre-trained weights on Kinetics [16] dataset
for action classification. We modify the final layer of the
model to have a C + 1 dimensional output, where C is the

number of action classes and the additional output is for the
background class. A sigmoid activation is used in the final
layer in place of a softmax as this is a multi-label classifier.
We use BCE loss to train the classifier which is defined as,

Lcls(ŷ, y) = �
1

C + 1

CX

i=0

[yilog(ŷi) + (1� yi)log(1� ŷi)] (3)

where ŷi is the prediction and yi is the ground truth label.

3.4. TMAS Algorithm

To merge the tubelets and obtain the final action
tubes, we propose the Tubelet-Merge Action-Split algo-
rithm (TMAS). Each tubelet ti is described as follows:�
f i
1, f

i
2, b

i, a
i
c

�
where f i

1 is the start time, f i
2 is the end time,

b
i are the bounding boxes for each frame of the tubelet, and

a
i
c are the frame-level action probability scores for each ac-

tion class c 2 {0, 1, ...C}, where 0 is background. First,
we merge the tubelets into action-agnostic tubes of varying
length; then we split these action-agnostic tubes into a set
of action-specific tubes which contain the spatio-temporal
localizations for the various activities in the video.

Tubelet-Merge The procedure to merge tubelets into
action-agnostic tubes is described in Algorithm 1. The tem-
porally sequential stream of tubelets coming from the clas-
sification network are passed to the Tubelet-Merge proce-
dure as input. The set of candidate tubes is initialized with
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Algorithm 1 The Tubelet-Merge algorithm which merges
tubelets into action-agnostic tubes. The CHECKEND func-
tion determines if a candidate tube becomes a final tube or
is merged with another candidate.

Input: A stream of tubelets, S, from the classifier
Output: A set of action-agnostic spatio-temporal tubes, Tdone

Notation: Intertemp calculates temporal overlap between tubelets.
|M[(tc, ⇤)]| returns the cardinality of the set {t : M[(tc, t)] > 0}.

1: procedure TUBELET-MERGE(S)
2: Tprev , Tdone  {} . Initialize candidate and final tubes
3: M initialize hash table
4: while tc in S do . Continue until the stream of tubelets ends
5: for all tp in Tprev do

6: if Intertemp(tp, tc) > 0 then

7: M[(tp, tc)] IoU(tp, tc)
8: else

9: CHECKEND(tp, Tprev , M)
10: append tc to Tprev . Tubelet becomes a candidate tube
11: while Tprev is not empty do . Deals with remaining candidates
12: tp  Tprev [0]
13: CHECKEND(tp, Tprev , M)
14: return Tdone

1: function CHECKEND(tp, Tprev ,M)
2: if |M[(tp, ⇤)]| == 0 then

3: MOVE(tp, Tprev , Tdone) . Moves tp from Tprev to Tdone

4: else if |M[(tp, ⇤)]| == 1 then

5: ti  maxti M[(tp, ti)]
6: if |M[(⇤, ti)]| == 1 then

7: MERGE(tp, ti, Tprev , M)
8: else

9: MOVE(tp, Tprev , Tdone)
10: else

11: ti  maxti M[(tp, ti)]
12: MERGE(tp, ti, Tprev , M)

1: function MERGE(t1, t2, Tprev ,M) . Merges two candidate tubes
2: t1  (f1

1 , f
2
2 , {b

1, b
2}, {a

1, a
2}) . {} is concatenation

3: remove t2 from Tprev

4: M[t1, ti] M[t2, ti] . Done for all ti where M[t2, ti] � 0

the first tubelet. For each subsequent tubelet, we look for
spatio-temporal overlap with the existing candidate tubes.
This results in four possible outcomes: 1) If there is no over-
lap, the tubelet itself becomes a new candidate tube, 2) If
there is a unique match found between a candidate tube and
the tubelet, they are merged and become a new candidate
tube, 3) if the tublet has an overlap with multiple candi-
dates, then the tubelet becomes a new candidate, 4) if mul-
tiple tublets have an overlap with a single candidate tube,
then the tubelet with the highest overlap is merged with that
candidate and the other tubelets become separate candidate
tubes. Once all tubelets are checked, the candidate tubes
become the final action-agnostic tubes.

Action-Split From the action-agnostic tubes we ob-
tain action-specific spatio-temporal localizations using the
Action-Split procedure described in Algorithm 2. We
start by smoothing out per-frame action confidence scores;

Algorithm 2 The Action-Split algorithm which converts the
action-agnostic tubes into action-specific predictions.

Input: A set of action-agnostic tubes, T , and a set of actions, C
Output: A set of spatio-temporal action-specific tubes, AG

Notation: The hyperparameters ⌧,↵,�, and � are described in the
supplementary materials. aic[f ] and ti[f ] contain the action prediction
scores and tube information at frame f , respectively.

1: procedure ACTION-SPLIT(T )
2: AG  {} . Initializes the action-specific tubes
3: for all ti in T do

4: tsmooth  SMOOTH(ti)
5: for all c in 1 : C do . Loop through each action class
6: aL  EXTRACT(tsmooth, c)
7: append aL to AG

8: return AG

1: function SMOOTH(ti)
2: for all f in f i

1 : f i
2 do

3: aic [f ] 1
2⌧+1

P⌧
k=�⌧ aic [f + k]

4: return ti

1: function EXTRACT(ti, c) . Extracts tubes of a specific class
2: AL, al  {} . Initialize extracted action tubes and a placeholder
3: count 0
4: for all f in f i

1 : f i
2 do

5: if aic[f ] > ↵ then . Continue current action tube
6: append ti[f ] to al
7: count 0
8: else

9: count count+ 1
10: if count > � then . Current action tube is finished
11: append al to AL

12: al  {}, count 0

13: remove tubes shorter than � from AL

14: return AL

which accounts for fragmentation caused by action miss-
classifications. Then we build the action-specific tubes by
checking for continuous occurrences of each action class;
this allows several occurrences of the same activity to occur
within a single tube. For instance, a person walking might
stop and stand for several seconds and start walking again;
this entire sequence will be contained in a single spatio-
temporal tube, but the Action-Split procedure will correctly
generate two separate instances of activity walking and one
instance of activity standing. To be robust to classifica-
tion errors, action tubes with the same action label that are
within a limited temporal neighborhood are combined to-
gether to form a single continuous action prediction.

Runtime Complexity The worst-case runtime of our
TMAS algorithm is O

�
n2

�
, where n is the total number

of candidate tubes at any given time. However, we sequen-
tially process our tubelets and constantly shift the candi-
date tubes which can not have any possible future match to
the set of final tubes. Therefore, the set of candidate tubes
at any particular time is reasonably small and our TMAS
algorithm contributes negligible overhead to our system’s
overall computation time.
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4. Experimental Setup

4.1. DIVA Dataset

The DIVA dataset is a large-scale spatio-temporal action
detection dataset with untrimmed surveillance videos. It
consists of videos from the VIRAT [19] dataset with added
annotations for action detection. There are 64 videos (2.47
hours) in training and 54 videos (1.93 hours) in the valida-
tion set, with annotations for all the activities. There are
246 videos (10.11 hours) in the held out test set for which
the annotations are not made public. There are 40 differ-
ent types of activities in the dataset which can be broadly
categorized into activities involving only people, activi-
ties involving only vehicles, and activities involving both
people and vehicles. Of these 40 classes only 18 classes
are used for evaluation of the system: activity carrying,
vehicle turning right, vehicle turning left, Closing, Open-
ing, Exiting, Entering, Talking, Transport HeavyCarry, Un-
loading, Pull, Loading, Open Trunk, Closing Trunk, Rid-
ing, specialized texting phone, specialized talking phone,
and vehicle u turn. Remaining classes are considered
hard negative, or background. Videos in this dataset are
captured from surveillance cameras mounted on buildings,
mostly overlooking parking lots or streets, where the ac-
tivities take place. All videos are high resolution, either
1920 ⇥ 1080 or 1280 ⇥ 720, with variation in scale, orien-
tation of objects, and camera viewpoints.

4.2. Training Details

Network Training DIVA videos are high resolution and
it is not feasible to train a localization model at that scale.
Therefore, we rescale the videos to a lower resolution of
800 ⇥ 448, while maintaining the aspect ratio. A stack of
16 frames is fed to the localization network to obtain the
binary segmentation masks. The network is trained using
SGD [24], with a learning rate of 1e � 3 for about 100000
iterations. Our classification model is trained with a clip
length of 16 frames (with a skip rate of 1 to obtain a second
long clip) and a spatial-resolution of 112 x 112. We use
the ADAM optimizer [17] with a learning rate of 1e-4 to
train the classifier for 75000 iterations on a single NVIDIA
GeForce Titan X GPU.

Data Pre-processing For the data used in training the lo-
calization network, we apply random frame jitter and crop
to simulate shaking cameras and changes in scale. These
augmentations add variation to the training data, and greatly
reduces overfitting.

The spatial resolution of activity tubelets can be of any
size, but the input to the classification model is fixed. To
address this issue we crop a square region encompassing
the activity within the tubelet and rescale it to the size ex-
pected by the classification model. This approach helps us

in maintaining the aspect ratio of the objects in the input
clips. In temporal domain, the activity tubelets can be of
arbitrary length, so we extract multiple clips by applying a
sliding window over the length of the entire tubelet. To train
the classification model, clips are generated using both the
ground-truth annotations as well as the tubelets from the lo-
calization network. This increases the amount of training
data seen by the classifier, allowing for improved perfor-
mance on the test set. Training clips from the localization
model that do not contain any of the 18 activity classes used
for evaluation are labelled as hard negative.

One of the challenging issues with the DIVA dataset
is data imbalance. Refer to Figure 3 for distribution of
per-class action instances/frames from DIVA ground-truth
training set. Since clips are extracted using a sliding win-
dow, the class imbalance is further exasperated for longer,
repetitive activities like activity carrying and Riding as well
as shorter, atomic activities like Loading, Unloading, En-
tering, and Exiting. To overcome this issue, we use aug-
mentation techniques such as multi-scale cropping, frame
reversal, spatial-jittering, and flipping of frames along the
vertical axis. In multi-scale cropping we randomly crop a
region around the center of a clip at different scales to sim-
ulate zoom-in and zoom-out effect to have actors/objects at
different scales. We reverse the order of frames in a clip
to generate new clips for specific pairs of classes such as
(Opening, Closing), (Loading, Unloading), (Entering, Exit-
ing), and (Open Trunk, Close Trunk) to increase the num-
ber of samples for these classes. With spatial-jittering we
simulate camera shake due to wind, which occasionally oc-
curs in test videos.

5. Results

In this section we present evaluation results of individ-
ual components in the proposed architecture and discuss the
overall system performance.

5.1. Localization

We run several ablations to evaluate the effect of the dif-
ferent components - feature pyramid, atrous convolution,
and multi-layer loss - of our localization network. Table 1
shows the performance of different variations of our action
localization network on the DIVA validation set in terms of
IoU scores. The baseline network is an I3D based encoder-
decoder architecture with skip connections. The addition of
these components improves our IoU scores considerably.

5.2. Classification

We experiment with multiple classification models to de-
termine the optimal network architecture for our system. A
comparison of their performance on the validation set is
shown in Table 2. We use average F1-Score as a metric
to compare the different models. For a fair comparison, all
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Model IoU

Baseline 0.540
Baseline+FPN 0.572
Baseline+FPN+MLL 0.613
Baseline+FPN+MLL+Atrous 0.628

Table 1. Ablation experiments to study the effect of different com-
ponents of the localization network.

Architecture Precision Recall F1-Score

I3D [4] 0.36 0.31 0.33
R(2+1)D [28] 0.43 0.39 0.40
P3D [22] 0.43 0.41 0.41
3D-ResNet [11] 0.46 0.43 0.44

Table 2. Average Precision, Recall and F1-score on DIVA valida-
tion set with different network architectures for classification. We
use pre-trained weights on Kinetics dataset [16] to initialize all
these models before training.

Figure 3. Number of samples per class and F1-Score achieved by
the trained classifier on the DIVA validation set. The size of each
bubble indicate the number of frames for an activity class. The
exact numbers are indicated next to the activity name in the legend
on the right.

models are initialized with pre-trained weights on the Kinet-
ics dataset [16] and are trained with the same settings. We
observe that the 3D-ResNet based model, WideResNet-50
[11], outperforms the other architectures.

We also analyze the class level performance of the clas-
sification model on the validation set. The results using our
final classification model are shown in Figure 3. We can
observe that our network performs better on longer activ-
ity classes such as Riding and activity carrying with higher
number of training samples when compared to shorter activ-
ity classes like Unloading and Loading which have fewer
samples. Activity classes specialized texting phone, spe-
cialized talking phone have the lowest F1-Score as these
have considerably fewer samples and appear very similar
to activity standing which is a background activity.

5.3. System Evaluation

Metrics We evaluate the performance of our system us-
ing several metrics: probability of missed detection at fixed

Pmiss@RFA 0.01 0.03 0.1 0.15 0.2 1.0

[9] 0.87 0.80 0.61 0.56 0.54 0.36
Ours12 0.87 0.73 0.55 0.50 0.46 0.34
Ours18 0.87 0.77 0.61 0.54 0.51 0.39

Table 3. Comparison of our temporal localization results on
DIVA(AD) validation with Gleason et al.[9] on 12 classes from
TRECVID-2018 [1]. The third row presents our results on 18
classes from TRECVID-2019 [2] [3] evaluation.

Team Pmiss@0.15RFA Pmiss@1.0RFA

P4 0.872 0.704
Xu et al. [30] 0.863 0.720
P3 0.759 0.624
P1 0.710 0.603
P2 0.624 0.621
Gleason et al. [9] 0.618 0.441
Ours 0.599 0.436

Table 4. Pmiss scores on the DIVA test set for 12 classes from
TRECVID-2018 (AD). The best performance is indicated in bold.

rate of false alarm per minute (Pmiss@RFA), probability of
missed detection at fixed time-based false alarm per minute
(Pmiss@TFA), and partial area under the Detection Error
Tradeoff curve (AUDC). These measure the quality of ac-
tion detections both temporally, for the action detection
(AD) task, and spatio-temporally, for the action-object de-
tection (AOD) task. To calculate these metrics, a one-to-
one correspondence is found between the ground-truth ac-
tions and the detected actions; ground-truth actions with-
out a corresponding detection are missed detections, while
detections without corresponding ground-truth actions are
false alarms. For more detailed explanations of the differ-
ent evaluation metrics as well as evaluation code, we refer
to TRECVID 2018 [1] and TRECVID 2019 [2][3].

Comparison For fair comparison with an earlier work
[9], we compute Pmiss@RFA on the validation set for the
same set of 12 classes which are reported in their results.
The comparison is presented in Table 3. In Table 4, we com-
pare our results with other participants from TRECVID-
2018 [1] challenge. The metric used here are Pmiss score
at RFA thresholds of 0.15 and 1.0.

In Table 5, we present the results from the latest
TRECVID-2019 [2] [3] learderboard which show that
our approach achieves best results on Pmiss@0.15TFA,
Pmiss@0.15RFA, and comparable results on the AUDC
score. As these results are on the held out test set, we only
present scores shared by the independent evaluator.

The results presented so far show the performance of the
system only on temporal detection of activities. We evalu-
ate our model on the spatio-temporal detection task (AOD),
results of which are presented in Table 6. These results are
on the DIVA validation set. To the best of our knowledge,
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Figure 4. Qualitative results of our system on some sample validation videos (shown only one frame, full videos are provided in the
supplementary material). This demonstrates the ability of our system to handle varying scenes, object scales, and action types.

Team Pmiss@0.15TFA Pmiss@0.15RFA AUDC

Fraunhofer 0.7747 0.8474 0.8270
vireoJD-MM 0.5482 0.7284 0.6012
NTT CQUPT 0.5112 0.8725 0.6005
Hitachi 0.5099 0.8240 0.5988
BUPT-MCPRL 0.4328 0.7491 0.5240
MUDSML 0.3915 0.7979 0.4840
Ours 0.3858 0.7022 0.4909

Table 5. Temporal localization results (AD) on DIVA test set from
TRECVID-2019 leaderboard. All the metrics relate to the miss-
rate, so lower values indicate better performance of the system.

Pmiss@RFA 0.01 0.03 0.1 0.15 0.2 1.0

Ours18 0.939 0.895 0.751 0.773 0.731 0.598

Table 6. The spatio-temporal action localization results (AOD) on
DIVA validation set on 18 classes from TRECVID-2019.

there are no published works which have reported results on
the AOD task to compare with.

6. Discussion

Online action detection Online action detection is dif-
ferent from traditional action detection as its goal is to de-
tect an action as it happens. Our proposed system is an
online action detection system as it can process frames as
they come in and can perform localization, classification
and temporal segmentation of activities with little or no de-
lay. Other systems such as [9] are restricted to offline de-
tection as they rely on object detection for every frame in
the video, requiring access to future frames to generate tube
proposals. This is a major advantage of our system as it can
be readily used in real-world surveillance applications.

Qualitative Analysis We present some qualitative results
of our system in Figure 4. Our system performs well on dif-
ferent viewpoints, action scales, and action types. We are
able to detect activities involving multiple actors (Talking),
as seen in the leftmost image, as well as activities involv-
ing interactions between a person and a vehicle (Closing),
as seen in the rightmost image. Since we do not rely on

frame-based object detection, we produce fewer detections
for object which are not involved in an activity, as is evident
from the stationary vehicles in each of the images.

7. Conclusion

In this work, we propose a real-time online system to
detect activities in untrimmed surveillance videos. The pro-
posed system consists of three main components which in-
clude tubelet generation, action classification, and tubelet
merging. The proposed approach process short video clips
at a time which helps in real-time online processing. The
efficient merging of tubelets using TMAS algorithm makes
the spatio-temporal detections robust to varying length ac-
tivities. In contrast to existing approaches, it does not re-
quire frame level object detection or optical flow extraction
which are computationally expensive and need externally
trained models. The proposed method provides state-of-the-
art results on the DIVA dataset with a processing speed of
over 100 fps.
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