Call for Participation in TRECVID 2023


February 2023 - December 2023

Conducted by the National Institute of Standards and Technology (NIST)
with additional funding from other US government agencies. Below you
can find an overview on the used datasets, tasks, and how to apply to
participate. All teams are encouraged to apply early to get access to
data and join the slack workspace of active teams.
Please consult the guidelines for each task for more details
including General Schedule

Application URL:

Application deadline: June 1.
[apply early to get access to task discussions, participants mailing lists, and datasets]


The TREC Video Retrieval Evaluation series ( promotes
progress in content-based analysis of and retrieval from digital video
via open, metrics-based evaluation. TRECVID is a laboratory-style
evaluation that attempts to model real world situations or significant
component tasks involved in such situations. In its 23rd annual evaluation
cycle, TRECVID will evaluate participating systems on 5 different video
analysis and retrieval tasks (Adhoc video search, video to text captioning, 
movie QA, medical video QA, and activities detection) using various types 
of real world datasets. Please see below more details about the main 
datasets & tasks to be used in 2023 across the 5 proposed tasks.


In TRECVID 2023 NIST will use at least the following data sets:

      * Vimeo Creative Commons Collection (V3C)

      The V3C is a large-scale video dataset that has been collected from high-quality
      web videos with a time span over several years in order to represent true videos
      in the wild. It consists of 28,450 videos with a duration of 3,801 hours in total.
      In 2023, the V3C2 subcollection (1,300 hr and 1.4 million shots) will be utilized
      as testing dataset, while V3C1 (1,000 hr and 1 million shots) previously adopted at
      TRECVID from 2019-2021 as a development dataset. This new V3C2 subcollection is
      planned to be adopted from 2022 to 2024.

      * IACC.3

      The IACC.3 was introduced in 2016 and consists of approximately 4600 Internet
      Archive videos (144 GB, 600 h) with Creative Commons licenses in MPEG-4/H.264
      format with duration ranging from 6.5 min to 9.5 min and a mean duration
      of almost 7.8 min. Most videos will have some metadata provided by the
      donor available e.g., title, keywords, and description. The
      IACC.3 is provided as development dataset for teams.

      * Kino lorber edu Movies

      A set of 10 movies licensed from Kino Lorber Edu (
      will be available to support the deep video understanding (DVU) task. Five movies
      will be assigned as part of the training dataset with annotations at the movie and
      scene levels, while the other 5 movies will be employed as the testing dataset for
      the DVU task. All movies are in English with duration between 1.5 - 2 hrs each.
      Participants Will be able to download the whole original movies and use the data for
      research only purpose within TRECVID tasks.

      * Deep Video Understanding (DVU)

      A set of 14 movies (total duration of 17.5 hr) with Creative Commons license previously
      utilized at the ACM Multimedia Grand Challenges in 2020 and 2021 will be available as a
      development dataset for the DVU task. The dataset contains movie-level and scene-level annotations.
      The movies have been collected from public websites such as Vimeo and the Internet Archive.
      In total, the 14 movies consist of 621 scenes, 1572 entities, 650 relationships, and 2491 interactions.

      * TV_VTT

      This dataset will support the training dataset for the Video-to-Text (VTT) task. 
      It contains short videos (ranging from 3 seconds to 10 seconds) from TRECVID VTT task 
      from 2016 to 2022. There are 12,870 videos with captions. Each video has between 2 and 
      5 captions, which have been written by dedicated annotators. 

      * MedVidQA Collections

      The VCVAL (Video Corpus Visual Answer Localization) task is supported by MedVidQA
      collections training dataset consisting of 3,010 human-annotated instructional questions
      and visual answers from 900 health-related videos. In addition, an automatically created
      HealthVidQA dataset consists of ~50 000 instructional questions and visual answers from
      15,000 health-related videos. A validation dataset consisting of 50 questions and their
      answer timestamps created from 25 medical instructional videos will also be available.
      Finally, the testing dataset will contain 50 questions and their answer timestamps created
      from 25 medical instructional videos.

      The MIQG (Medical Instructional Question Generation) task is supported by a training dataset
      consisting of 2710 question and visual segments, which are formulated from 800 medical instructional
      videos from the MedVidQA collections. The provided validation dataset will contain 145 questions
      and answers timestamps created from 49 medical instructional videos, while the test dataset will
      contain 100 questions and answers timestamps created from 45 medical instructional videos.

      * Gatwick and i-LIDS MCT airport surveillance video

      The data consist of about 150 hours obtained from airport
      surveillance video data (courtesy of the UK Home Office). The
      Linguistic Data Consortium has provided event annotations for
      the entire corpus. The corpus was divided into development and
      evaluation subsets. Annotations for 2008 development and test
      sets are available.

      * MEVA dataset

      The TRECVID ActEV 2023 Challenge is based on the Multiview Extended Video
      with Activities (MEVA) Known Facility (KF) dataset. The large-scale MEVA
      dataset is designed for activity detection in multi-camera environments.
      It was created on the Intelligence Advanced Research Projects Activity (IARPA)
      Deep Intermodal Video Analytics (DIVA) program to support DIVA performers and
      the broader research community. You can download the public MEVA resources
      (training video, training annotations and the test set) at


In TRECVID 2023 NIST will evaluate systems on the following tasks
using the [data] indicated:

    * AVS: Ad-hoc Video Search (automatic, manually-assisted, relevance feedback) [V3C2]

      The Ad-hoc search task started in TRECVID 2016 and will continue in 2023
      to model the end user search use-case, who is looking for
      segments of video containing persons, objects, activities, locations, etc.,
      and combinations of the former. Given about 40 textual queries created at
      NIST, return for each query all the shots which meet the video need expressed
      by it, ranked in order of confidence. Although all evaluated submissions will be
      for automatic runs, Interactive systems will have the opportunity to
      participate in the Video Browser Showdown (VBS) in 2024 using the same testing data (V3C2).

    * ActEV: Activities in Extended Video [MEVA]

      ActEV is a series of evaluations to accelerate development of robust, multi-camera,
      automatic activity detection algorithms for forensic and real-time alerting applications.
      ActEV is an extension of the annual TRECVID Surveillance Event Detection (SED) evaluation
      where systems will also detect, and track objects involved in the activities. Each evaluation
      will challenge systems with new data, system requirements, and/or new activities.

    * MedVidQA: Medical Video Question Answering [MedVidQA Collections]
      Many people prefer instructional videos to teach or learn how to accomplish a particular task
      with a series of step-by-step procedures in an effective and efficient manner. In a similar way,
      medical instructional videos are more suitable and beneficial for delivering key information
      through visual and verbal communication to consumers' healthcare questions that demand instruction. 
      With an aim to provide visual instructional answers to consumers' first aid, medical emergency, and 
      medical educational questions, this TRECVID NEW task on medical video question answering will 
      introduce a new challenge to foster research toward designing systems that can understand medical 
      videos to provide visual answers to natural language questions and equipped with the multimodal 
      capability to generate instructional questions from the medical video. 
      Following the success of the 1st MedVidQA shared task in the BioNLP workshop at ACL 2022, MedVidQA 2023 at 
      TRECVID expanded the tasks and introduced a new track considering language-video understanding and generation. 
      This track comprises two main tasks, Video Corpus Visual Answer Localization (VCVAL) and 
      Medical Instructional Question Generation (MIQG). For detailed information, please refer to 
      the task guidelines page.

    * DVU: Deep Video Understanding [Kino lorber edu movies]

      Deep video understanding is a difficult task which requires computer vision systems to develop
      a deep analysis and understanding of the relationships between different entities in video,
      and to use known information to reason about other, more hidden information.
      The aim of the task is to push the limits of multimedia analysis techniques to
      address analysing long duration videos holistically and extract useful knowledge to utilize it
      in solving different kinds of queries. The knowledge in the target queries includes both visual
      and non-visual elements. Participating systems should take into consideration all available
      modalities (speech, image/video, and in some cases text). 

      The task for participating researchers will be: given a whole original movie (e.g 1.5 - 2hrs long), 
      image snapshots of main entities (persons, locations, and concepts) per movie, and ontology of 
      relationships, interactions, locations, and sentiments used to annotate each movie at global movie-level 
      (relationships between entities) as well as on fine-grained scene-level (scene sentiment, interactions 
      between characters, and locations of scenes), systems are expected to generate a knowledge-base of 
      the main actors and their relations (such as family, work, social, etc) over the whole movie, and 
      of interactions between them over the scene level. This representation can be used to answer a set of 
      queries on the movie-level and/or scene-level per movie. The task will support two tracks (subtasks) 
      where teams can join one or both tracks. Movie track where participants are asked queries on the whole 
      movie level, and Scene track where Queries are targeted towards specific movie scenes. New this year,
      is a subtask where systems can also submit results against the same queries but modified testing dataset 
      after introducing some natural corruptions and perturbations to simulate real world noise datasets.

    * VTT: Video to Text Description [V3C3]

      Automatic annotation of videos using natural language text descriptions has been a long-standing goal
      of computer vision. The task involves understanding of many concepts such as objects, actions,
      scenes, person-object relations, temporal order of events and many others. In recent years there have
      been major advances in computer vision techniques which enabled researchers to start practically to
      work on solving such problem. Given a set of short video clips, systems are asked to work and
      submit results for a main task: The "Description Generation" task requires systems to automatically
      generate a text description (1 sentence) for each video clip based on who is doing what, where and when.
      The other subtask proposed this year is to generate text descriptions on the same testing dataset but 
      after introducing some natural corruptions and perturbations to simulate real world noise datasets.

In addition to the data, TRECVID will provide uniform scoring procedures, and a forum for organizations
interested in comparing their approaches and results.

Participants will be encouraged to share resources and intermediate system outputs to lower entry barriers
and enable analysis of various components' contributions and interactions.

* You are invited to participate in TRECVID 2023 *

The evaluation is defined by the Guidelines. A draft version is
available and further feedback input from the participants are welcomed till April,2023.

You should read the guidelines carefully before applying to participate in one or more tasks:

Please note

1) Dissemination of TRECVID work and results other than in the
(publicly available) conference proceedings is welcomed, but the
conditions of participation specifically preclude any advertising
claims based on TRECVID results.

2) All system output and results submitted to NIST are published in
the Proceedings or on the public portions of TRECVID web site archive.

3) The workshop is open to participating groups that submit
results for at least one task, to selected government personnel
from sponsoring agencies, data donors, and interested researchers
who may never participated Before and would like to know more about TRECVID.

4) Each participating group is required to submit before the
workshop a notebook paper describing their experiments and results.
This is true even for groups who may not be able to attend the

5) It is the responsibility of each team contact to make sure that
information distributed via the call for participation and the email list is disseminated to all team members with
a need to know. This includes information about deadlines and
restrictions on use of data.

6) By applying to participate you indicate your acceptance of the
above conditions and obligations.

There is a tentative schedule for the tasks included in the Guidelines
webpage: Schedule

Workshop format

The workshop format as being in-person, hybrid, Or virtual in 2023 is still
something to be decided. Details will be provided to participants as soon as available.

The TRECVID workshop is used as a forum both for presentation of
results (including failure analyses and system comparisons), and for
more lengthy system presentations describing retrieval techniques
used, experiments run using the data, and other issues of interest to
researchers in information retrieval and computer vision. As there is
a limited amount of time for these presentations, the evaluation coordinators
and NIST will determine which groups are asked to speak and which groups will
present in a poster session. Groups that are interested in having a
speaking slot during the workshop will be asked to submit a short
abstract before the workshop describing the experiments they
performed. Speakers will be selected based on these abstracts.

How to respond to this call

Organizations wishing to participate in TRECVID 2023 must respond
to this call for participation by submitting an on-line application by
the latest 1 June (the earlier the better). Only ONE APPLICATION PER TEAM
please, regardless of how many organizations the team comprises.

*PLEASE* only apply if you are able and fully intend to complete the
work for at least one task. Taking the data but not submitting any
runs threatens the continued operation of the workshop and the
availability of data for the entire community.

Here is the application URL:

You will receive an immediate automatic response when your application
is received. NIST will respond with more detail to all applications submitted
before the end of March.  At that point you'll be given the active participant's 
userid and password, be subscribed to the tv23.list email discussion list, 
and can participate in finalizing the guidelines as well as sign up to get the data, 
which is controlled by separate passwords. All active teams will also be added 
to a slack workspace to encourage more communication and facilitate announcements.

TRECVID 2023 email discussion list

The tv23.list email discussion list ( will serve as
the main forum for discussion and for dissemination information about
TRECVID 2023.  It is each participant's responsibility to monitor the
tv23.list postings.  It accepts postings only from the email addresses
used to subscribe to it. An archive of past postings is available using the active
participant's userid/password.

Questions ?

Any administrative questions about conference participation,
application format/content, subscriptions to the tv23.list,
etc. should be sent to george.awad at

Best regards,

TRECVID 2023 organizers team

National Institute of
Standards and Technology HomeDate created: Wednesday, 26-Jan-22
For further information contact