Comparison of Content Selection Methods for Skimming Rushes Video

Werner Bailer, Georg Thallinger
TRECVID Video Summarization Workshop @ ACM MM, 2008-10-31
Outline

- Summary creation process
- Content selection
 - a closer look to the problem
 - rule-based approach
 - HMM based approach
- Results and comparison
- Conclusion
Summary Creation Process

1. Content Analysis
2. Remove Unusable Content
3. Retake Detection
4. Representative Clip Selection
5. Editing

Legend:
- Content selection
- Content clustering
- Pre/Post processing
Summary Creation Process

Content Analysis -> Remove Unusable Content -> Retake Detection -> Representative Clip Selection -> Editing

- Content selection
- Content clustering
- Pre/Post processing

our focus in TRECVID 2007
Summary Creation Process

Content Analysis

Remove Unusable Content

Representative Clip Selection

Retake Detection

Editing

Content selection
Content clustering
Pre/Post processing

our focus in TRECVID 2008
Content Analysis & Junk Content Removal

- Shot boundary detection (hard cuts)
 - frame differences, SVM classifier trained on TRECVID 2006 data
- MPEG-7 Color Layout and EdgeHistogram
 - descriptors extracted from every 10th frame
- Visual activity
 - averaged over 10 frames
- Face detection
 - Viola/Jones, OpenCV implementation
- Junk content removal
 - skip short shots: duration < 10 frames
 - remove color bars and monochrome frames: standard deviation in columns < 15 intensity levels in each channel
Repeated Take Detection

- Take of same scene, from same camera
- Split shots into parts (subshots)
- Pair-wise matching of parts
 - match extracted colour, texture and visual activity descriptor sequences of the parts (temporally sub-sampled by 10)
 - modified Longest Common Subsequence (LCSS) algorithm
 - remove contained and overlapping matches
 - result is a similarity matrix of the take candidates
- Cluster take candidates
- Determine relevance
 - based on overlap with takes in the same cluster
Representative Clip Selection

- Content selection problem for BBC rushes 2007 test data
 - values based on ground truth provided by NHK

- Relevant content
 - mean 38.02% (min. 11.13%, max. 87.75%)
 - all "meaningful" content

- Non-redundant content
 - use longest take of all takes of a scene
 - mean 15.20%

- Summarization goal of 2% requires
 - discarding ~87% of non-redundant content
 - or using 7.6x acceleration
Input to Content Selection

- List of arbitrary segments
 - relevance value
 - redundancy information
 - absolute: probability that this segment is useless
 - relative: list of segments w.r.t. which the current segment is redundant, and a similarity value for each of these segments

- In our experiments
 - retakes: relative redundancy information + similarity values
 - junk content: absolute redundancy information
 - motion activity: selected segments with relevance
 - presence of faces: selected segments with relevance
Two Approaches to Content Selection

- **Rule-based approach**
 - merge relevant and redundant segment lists into one relevance function over time
 - adaptive thresholding yields list of segments (takes length constraint into account)
 - optimize by removing/adding parts of segments

- **HMM based**
 - vector of relevance/redundancy values for each time instant
 - selected/not-selected etc. are hidden states
 - training
 - extract relevance/redundancy vector sequences from test set
 - create state sequence from ground truth
 - content selection
 - find ML path for given sequence of relevance/redundancy vectors
HMM Based Approach

- 6 states
 - non-relevant (Npre)
 - relevant (Rpre)
 - selected (S)
 - scene boundary (B)
 - non-relevant (Npost)
 - relevant (Rpost)

- Parameter λ in state transition matrix
 - control number and length of selected segments

- Limitations
 - not possible to enforce length constraint
 - junk content not deterministically excluded
Approaches to Content Selection - Overview

- **Selection Method**
 - Rule-based
 - HMM based

- **Redundant and Selected Segments**

- **Relative to Absolute Redundancy (if necessary)**
- **Weighted Sum of Relevance Redundancy Time Lines**

- **Estimate Hidden State Sequence**
 - HMM Parameters
 - One Selected Segments List

- **Estimate Threshold**
 - Until Target Length Matched

- **Apply Threshold**
 - If below minimum length (optional check)
 - Yes: Add parts of the segments just above threshold
 - No: Final Selected Segments List
Results

<table>
<thead>
<tr>
<th>Parameters</th>
<th>JRS1 rule</th>
<th>JRS2 HMM</th>
</tr>
</thead>
<tbody>
<tr>
<td>min. segment length</td>
<td>0.5</td>
<td>2.0</td>
</tr>
<tr>
<td>max. segment length</td>
<td>3.0</td>
<td>3.0</td>
</tr>
<tr>
<td>min. segment distance</td>
<td>5.8</td>
<td>5.8</td>
</tr>
<tr>
<td>$w_{rel}=w_{red}$</td>
<td>0.5</td>
<td>n/a</td>
</tr>
<tr>
<td>max. total length</td>
<td>0.02</td>
<td>0.02</td>
</tr>
<tr>
<td>min. total length</td>
<td>0.30</td>
<td>0.30</td>
</tr>
<tr>
<td>rel. to abs. redundancy</td>
<td>longest</td>
<td>n/a</td>
</tr>
<tr>
<td>split long segments</td>
<td>true</td>
<td>true</td>
</tr>
</tbody>
</table>

Results

<table>
<thead>
<tr>
<th></th>
<th>JRS1 median</th>
<th>(JRS1 median)</th>
<th>JRS2 median</th>
<th>(JRS2 median)</th>
</tr>
</thead>
<tbody>
<tr>
<td>DU</td>
<td>18.50</td>
<td>(0.15)</td>
<td>14.00</td>
<td>(0.03)</td>
</tr>
<tr>
<td>XD</td>
<td>13.38</td>
<td>(0.24)</td>
<td>14.20</td>
<td>(0.22)</td>
</tr>
<tr>
<td>TT</td>
<td>25.33</td>
<td>(0.09)</td>
<td>26.67</td>
<td>(0.13)</td>
</tr>
<tr>
<td>VT</td>
<td>20.00</td>
<td>(0.05)</td>
<td>18.33</td>
<td>(0.00)</td>
</tr>
<tr>
<td>IN (median)</td>
<td>0.22</td>
<td>(0.19)</td>
<td>0.28</td>
<td>(0.27)</td>
</tr>
<tr>
<td>IN (min)</td>
<td>0.00</td>
<td></td>
<td>0.08</td>
<td></td>
</tr>
<tr>
<td>IN (max)</td>
<td>0.53</td>
<td></td>
<td>0.67</td>
<td></td>
</tr>
<tr>
<td>JU (median)</td>
<td>3.67</td>
<td>(1.00)</td>
<td>3.00</td>
<td>(0.50)</td>
</tr>
<tr>
<td>RE (median)</td>
<td>4.00</td>
<td>(1.00)</td>
<td>4.00</td>
<td>(1.00)</td>
</tr>
<tr>
<td>TE (median)</td>
<td>3.33</td>
<td>(1.00)</td>
<td>2.33</td>
<td>(0.50)</td>
</tr>
</tbody>
</table>
Results - MS221050

rule

HMM
Results - MS221050

<table>
<thead>
<tr>
<th></th>
<th>JRS1 (rule)</th>
<th>JRS2 (HMM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>DU</td>
<td>14.00</td>
<td>4.20</td>
</tr>
<tr>
<td>XD</td>
<td>6.19</td>
<td>15.99</td>
</tr>
<tr>
<td>TT</td>
<td>17.33</td>
<td>21.00</td>
</tr>
<tr>
<td>VT</td>
<td>16.33</td>
<td>7.67</td>
</tr>
<tr>
<td>IN</td>
<td>0.28</td>
<td>0.61</td>
</tr>
<tr>
<td>JU</td>
<td>4.33</td>
<td>3.33</td>
</tr>
<tr>
<td>RE</td>
<td>4.33</td>
<td>4.00</td>
</tr>
<tr>
<td>TE</td>
<td>2.67</td>
<td>1.67</td>
</tr>
</tbody>
</table>

below/exactly/above median of this run
Results - MS221050

<table>
<thead>
<tr>
<th></th>
<th>JRS1 (rule)</th>
<th>JRS2 (HMM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>DU</td>
<td>14.00</td>
<td>4.20</td>
</tr>
<tr>
<td>XD</td>
<td>6.19</td>
<td>15.99</td>
</tr>
<tr>
<td>TT</td>
<td>17.33</td>
<td>21.00</td>
</tr>
<tr>
<td>VT</td>
<td>16.33</td>
<td>7.67</td>
</tr>
<tr>
<td>IN</td>
<td>0.28</td>
<td>0.61</td>
</tr>
<tr>
<td>JU</td>
<td>4.33</td>
<td>3.33</td>
</tr>
<tr>
<td>RE</td>
<td>4.33</td>
<td>4.00</td>
</tr>
<tr>
<td>TE</td>
<td>2.67</td>
<td>1.67</td>
</tr>
</tbody>
</table>

below|exactly|above median of all runs on this video
Results – Comparison

- Both runs yield short summaries, well below the 2% limit
 - the rule based: 58.00% of max. length, 1.20% of original content
 - HMM run: 49.65% of max. length, 0.99% of original content
- HMM based selected method
 - 6% higher inclusion (increase of 27%)
 - duration is 24% shorter
 - lower score for pleasant timing
 - lower score for junk (not causally related to shorter duration or higher inclusion)
 - 47% higher editing time (more and shorter segments)
 - estimation of ML state sequence takes on average 4.75 sec/video
 - evaluation against NHK ground truth supports the results (precision and recall in the range 0.3-0.35)
Conclusion

- Comparison of two methods for content selection
- Both parametrized to yield quite short summaries
 - high scores for pleasant tempo, repeated content and junk
 - low inclusion score
- Comparison
 - HMM slightly higher inclusion at shorter duration
 - HMM difficult to control (junk, length constraint)