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Abstract

We summarize the fully automatic approach to the TRECVID 2010 Known Item (KIS) and Instance Search
(INS) tasks of the budapest_acad team in the JUMAS Consortium with Fondazione Bruno Kessler who pro-
vided the ASR technologies. Our submissions summarized in Table 1 use linear combinations of the following
basic techniques.

e Meta: Text retrieval based on video metadata.
e ASR: Text retrieval based on ASR most likely readout.

e SIX and CLEF: Total weight of high level feature classifiers considered relevant by text based similar-
ity to the topic. We used the publicly available Semantic Indexing (SIX) category predictions and the
ImageCLEF annotations (CLEF).

Our KIS submissions were based on the linear combination of the four components. Based on experiments from
last year, we expected SIX to perform best and gave high weight in our runs. This assumption proved to be
wrong. It turns out that Meta contained the strongest information with little improvement possible beyond based
on simple linear combination.

For Instance Search we submitted a single run where we used the Dutch translation of the queries to retrieve
the ASR text. This run reached an AP sum of 0.508 for the 22 topics. The INS task proved to be very difficult.
Our fairly straightforward method reached close to the 0.729 result of the best participant.

1 Introduction

In this paper we describe our approach to TRECVID 2010 Known Item Search (KIS) and Instance Search (INS)
tasks using fully automatic processing. The KIS test data set consisted of 200 hours of video with approximately
96400 shots with the corresponding automatic speech recognition (ASR) transcript. The INS test data set consisted
of a 118GB video footage with the corresponding automatic speech recognition (ASR) transcript.

We describe our approaches that rely on text retrieval of the automatic speech recognition (ASR) output and
the metadata as well as on relevant high level feature selection (Section 3). The ASR output was given for the INS
task; for the KIS task we developed our own system that we describe in Section 2. For high level visual features
we used the publicly available annotations for shots produced by participants of the Semantic Indexing (SIX) task
as well as our own classifiers trained for the ImageCLEF2009 [14] tasks. The combination is linear with scores
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Run ID MIR | matches Meta ASR visual
cue | descr | cue | descr | SIX | CLEF

Meta cue 0.184 117 1

Meta descr 0.193 121 1

Meta all 0.209 141 1 1

Meta all 0.218 141 1

ASR cue 0.020 18 1

ASR descr 0.032 24 1

ASR all 0.029 29 1 1

ASR all 0.032 29 1 5

SIX 0.006 24 1

ImageCLEF | 0.000 5 1

budapest1 0.038 113 6 14 3 7 50 20

budapest2 0.026 159 6 14 3 7 | 100 30

budapest3 0.012 86 6 14 3 7 70 50

budapest4 0.007 153 3 7 70 50

best linear 0.223 149 | 20 40 1 5

Table 1: Summary of our KIS base components and our runs submitted, in terms of the mean inverted rank (MIR)
and the number of instances found in top 100 ranked (matches).

below a certain rank considered constant. Our runs, both submitted and additionally evaluated, are summarized
in Table 1.

We apply text retrieval to find the relevant parts in the KIS metadata, ASR output as well as to match high
level features to topics for KIS. We used the Hungarian Academy of Sciences text retrieval engine [4] that is based
on Okapi BM25 [16] with proximity weights [15, 2].

Since for the INS task, the ASR output is in Dutch, we translated the queries using online dictionaries word-by-
word. As a result, several synonyms were produced for every English word. For a group of alternate translations
we have only kept the highest tf.idf in every document.

In our high level visual concept detection based component we did not make use of the KIS training data set.
Instead, we used the ImageCLEF VCDT 2009 [14] training set that consisted of 5000 images labeled with 53
categories, a subset of the MIR Flickr 25,000 image data set. We pruned categories that were either unusable for
the task or have an inaccurate detector, finally arriving at 34 concept categories. These trained concept detectors
were evaluated on the IACC.A test set.

2 The Automatic Speech Recognition system

In this section we describe the main features of the FBK-irst systems developed for the TRECVID 2010 evaluation.
Word transcriptions are generated in two decoding passes, after partitioning of the input audio streams into clusters
of segments.

2.1 Audio partitioning

The audio partitioner consists of three main modules: the segmenter, based on a start-end-point speech activity
detector, the segment classifier, based on Gaussian Mixture Models (GMMs) and the clustering module using a
Bayesian Information Criterion (BIC).

Segmenter. In the current version of the system, the segmenter identifies the parts of the audio stream with
“high” energy values through the application of a start-end-point activity detector.

Segment classification. The goal of this module is to classify each acoustically homogeneous segment in
terms of broad acoustic classes. These latter ones are modeled by Gaussian Mixture Models.

Segment clustering. Identified acoustically homogeneous segments are clustered through a Bayesian Infor-
mation Criterion (BIC) hierarchical method. In this way segments in each cluster are assumed to belong to the
same speaker.



A the end of the partitioning process we obtain audio segments labeled with cluster number and speaker
gender.

2.2 Decoding Process

For each cluster of speech segments, the system, which makes use of continuous density Hidden Markov Mod-
els (HMMs), generates a word transcription by performing two decoding passes interleaved by acoustic feature
normalization and acoustic model adaptation. Best word hypotheses, generated by the first decoding pass, are
exploited for performing cluster-wise acoustic feature normalization, based on Constrained Maximum Likelihood
Linear Regression (CMLLR) [7] and acoustic model adaptation. For this latter purpose, just Gaussian means of
triphone HMMs are adapted through the application of up to 4 full matrix transforms estimated in the MLLR
framework.

2.3 Acoustic Models

In both decoding passes acoustic models (AMs) are state-tied, cross-word, speaker-independent triphone HMMs.
Each HMM is characterized by a 3 state left to right topology, with the exception of the model associated to the
background noise, which has a single state. In addition to triphones, several spontaneous speech phenomena are
also modeled. Output probability distributions are modeled by mixtures of Gaussian probability density functions
(PDF) having diagonal covariance matrices. A phonetic decision tree is used for tying states and for defining the
context-dependent allophones.

Each speech frame is parametrized into a 52-dimensional observation vector composed of 13 mel frequency
cepstral coefficients (MFCCs) plus their first, second and third order time derivatives. Cepstral mean subtraction
and variance normalization is performed on static features on a cluster-by-cluster basis. A projection of acoustic
feature space, based on heteroscedastic linear discriminant analysis (HLDA), is embedded in the feature extraction
process as follows [18]. A GMM with 1024 Gaussian components is first trained on the original 52-dimensional
observation vectors. Acoustic observations in each, automatically determined, cluster of speech segments, are
then normalized by applying an affine transformation estimated w.r.t. the GMM through CMLLR [7]. After
normalization of training data, an HLDA transformation is estimated w.r.t. a set of state-tied, cross-word, gender-
independent triphone Hidden Markov Models (HMMs) with a single Gaussian per state, trained on the normalized
52-dimensional observation vectors. The HLDA transformation is then applied to project the set of 52 normalized
features into a 39-dimensional feature space. Recognition models used in the first and second decoding pass are
trained on these normalized, HLDA projected, acoustic features. HMM:s for the first decoding pass are trained
through a conventional maximum likelihood procedure. HMMs used in the second decoding pass are trained
through a speaker adaptive procedure [8]: for each cluster of speech segments an affine transformation is estimated
through CMLLR exploiting as target-models triphone HMMs with a single Gaussian density per state trained on
the HLDA projected acoustic features. The estimated affine transformation is then applied on the cluster data [8].
Acoustic models are finally trained from scratch on the obtained normalized acoustic data.

2.4 Language Model

The Language Model (LMs) used in the ASR system allows to estimate 4-grams probabilities. It was trained on
public texts stemming from several sources (news agencies, newspapers, transcriptions of parliamentary debates,
etc). In total, the training corpus consisted of 674M words. This LM included 65k unigrams, 27M bigrams, 29M
3-grams and 27M 4-grams.

3 High level video feature relevance

The KIS topics were matched against the high level features made available from the Semantic Indexing (SIX)
task as well as our own classifiers for the ImageCLEF VCDT 2009 [14] task with 53 categories (CLEF). The
feature descriptions served as input to text processing that provided us with a scored list of possibly relevant
features for every topic. To determine the relevance of a shot to a topic, we computed the sum of these scores,
weighted by the results of the high level feature extraction track for the shot.

We used the the video processing subsystem developed for TRECVID 2009 tasks [1]. We computed a
grayscale HOG descriptor on a dense grid for each image. We used Bag of Words representation with k=4000



K-Means. The Bag of Words generative modeling is a well known technique from text domain [10, 9]. It also
has been proved successful in image categorization and retrieval. [3, 17]. The images (shot keyframes) are rep-
resented by D = 4000 dimensional vectors. The BOV term frequency vector consists of the histogram of the
codewords from the codebook. These L1-normalized BOV vectors were fed into linear classifiers (L2-regularized
logistic regression classifier from the LibLinear package [5]) for each of the & = 34 concepts. This resulted in
34 concept probabilities for each image. We did this process at first on the 5000 image-sized training set, then
followed similar process using the trained classifiers on the evaluation data.

Using predictions for the SIX and CLEF high level visual features, we have applied the following approach to
score videos against the items:

e We weighted each high level visual features against each item (topic).

e We computed the video scores from the weight of the feature for the query item and the class predictions of
the video keyframes.

We weight high level visual features by matching against the visual cues and description of the search item. For
example feature “male” is related to “Find the video of bald, shirtless man showing pictures of his home full of
clutter and wearing headphone”. We first gave a manual description of the small fixed feature set containing the
name of the feature along with search terms with grammatical categories and possible Boolean relations. We label
the four grammatical categories noun, plural noun, verb and adjective. As an example, a feature description looks
like this:

female | female:n woman:n
old person | AND old:adj person:n

Next we process the item cue and description. We use the Stanford lexical parser [11, 12] to obtain the category
of each term and WordNet [13, 6] to find synonyms and hypernyms. For a fixed search item, we iterate over the
features, and consider a feature relevant for the item if

e we find a feature search word in the cue or description with the same category, in which case the feature
weight is 1;

e we find a feature search word in the synonyms with the same category, in which case the feature weight is
again 1;

e we find a feature search word in the hypernyms with the same category, in which case the feature weight
depends on the distance of the feature word and query word in WordNet.

Unfortunately, synonyms themselves were not strong enough to find related features, while hypernyms frequently
drifted. As an example, we had to manually remove the “man is a cat” along a few additional WordNet relations.

Given a video v and a search item ¢, we use the weight w;¢ of the relevant high level features f and the
predictor p,, for that feature over the video itself. In case of SIX features, we used the publicly available relevance
judgment for the whole video. To compute the score of a shot against an item, we computed

zpfv CWif-.
!

For SIX this formula scores videos. For CLEF features, we obtained prediction for shots and aggregated for
videos by averaging after skipping the first and last 5% of the video shots.

4 Conclusion

We summarize the results of our KIS submissions and post-submission experiments in Table 1. In our official
runs, we relied on an incorrect assumption that visual features provide the most accurate information on the item
as it was the case for the 2009 Search task. As it turns out, by simple linear combination, it is very hard to
improve on text retrieval of the Metadata. We believe that cross-modal feedback techniques could have exploited
information from weaker modes. Note that the official runs had higher number of items retrieved in top 100 than
our most accurate combinations, showing that visual techniques could have had a role in the KIS task.



For INS our single run of sum AP 0.508 is based solely on ASR text retrieval by the Dutch translation of the
queries. First, note that this corresponds to a MAP of 0.023, a result weaker than the KIS ASR retrieval result
and is considered very weak. On the other hand, this result gets quite close to the AP sum value 0.729 of the
best performing team, indicating the hardness of the task. Overall, we find these TRECVID tasks this year have
stronger emphasis in text retrieval than in earlier campaigns.
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