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Abstract

Approach we have tested in each of your submitted.rOnly one run was provided for our first year in
this competition. Our system is an adaptation obattloor video-surveillance system composed ofé re
time blob tracker and an offline scene understanditodule that accumulates statistics about observed
objects over a long period of time. In particulgtistics about object height and velocity areuaudated
over time using a non parametric approach. For‘@gect Put” event, we followed a dual foreground
segmentation approach where the output differeet@den a short term and a long term model is used f
triggering potential alerts. For Pointing, we apglithe learning of compound spatio-temporal feature
based on a data mining method.

Relative contribution of each component of our a@agh From the results, the tracking system, originally
designed for outdoors scenes, appears to be thie segaponent in our system. We need to improve the
background/foreground segmentation in order to predess fragmented objects. Also, we don’t have a
pedestrian or upper-body detector available thiar \@ is planned for next year however) so we are
tracking many foreground objects that are not perti.

What we learned about runs/approaches and the rebequestion(s) that motivated therRor the
PersonRunsgask, we adopted a simple non parametric appradeinie we are looking for velocity outliers
on trajectories provided by our tracker. Resultsean®t up to our expectations mainly because ojgcbb
tracker is not performing well enough. For @bjectPuttask, we were looking for a fast and low level
approach that could detect static objects appedaritize image foreground. It produced results belyour
expectations. The approach, however, is not abdeparate static persons versus real static obgaring

to a high number of false alarms. F&dinting’, we implemented a recent method based on a detiagn

of spatio-temporal grouping of local corners. Thithod demonstrated promising results on action
recognition datasets but has never been applieddeaf a video surveillance application.

Introduction

This is the first year of participation for CRIM see only provided results on three events. Our iptev
work on video surveillance [1] was directed maioly outdoor surveillance systems which involve very
different constraints. For th®bjectPutand Pointing events, we developed separate digusitthat are
independent of our tracking system.

All the computations were performed on the “Mamnhdusupercomputer located at the Center for
Scientific Computing at the Université de Sherbmok



| — Scene Modeling and Understanding
Pedestrian occurrence

The goal here is to produce processing masks évahious tasks as well as build simple camera gégm
models in order to reduce false alarms. Pedestiesections were performed on the entire developsent
(100 hours) using the Dalal and Triggs detector E2r each position within the scene, we estimaled
the average pedestrian height. The height measuatseraee also exploited for the geometric modelifg o
each camera view. A Pedestrian probability magse eomputed as shown in Figure 1. Those probwbilit
maps, once thresholded, will define the processiagks for the “PersonRuns” event detection.

(white= high number of detection occurrences); botim row: same for Camera 3.

Camera Geometry

A similar approach was used by the SFU team at T\RBC2009 [4]. Assuming a simple projective
geometry, a camera parallel to the ground planeaddetcts only on the ground plane, we can exphat t

following relationship between the real world olijaeighth and the observed image heigby [3]
h h—2 &)
Yo - Y%
wherey, is the row position of the horizon line aryy is the bottom image coordinate for the object.
Therefore a simple automatic camera calibrationteaperformed by regression from all the pedestrian




measurements given an average person héigland standard deviatios, (here we chosé, =1.8m
and s, =0.15m). The likelihood of the estimated height is assdiBaussian

(h' hp)z
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Figure 2 gives an example of the object height rhddavation for Camera 5. A mask for the ObjectPut
event detection is then derived from the convekdfuthe pedestrian bottom positions that are indyo
agreement with the height model.
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Figure 2. From left to right and top to bottom: aveage pedestrian height map (dark=tall); object
height distribution function of the object vertical position with color function of likelihood (2), mast
likely object positions with white boxes on the leéfshowing predicted heights by the model; convex
hull (in red) of the most likely area for the Obje¢Put Detection.

Object Velocity

Our object tracker was run on the development Bedtm the object tracks, we derive velocity
measurements in pixels/frames. At each image locati we estimated the velocity moments of order
from all the observed velocities
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whereK() is a Gaussian spatial kernel with a spatial widt®nly moments of order 1 (mean) and 2 are
estimated. Those statistics will be used for therSBnRuns” event detection explained below. Onreigu

below, we show the resulting statistics for cantera
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Figure 3. Average velocity map for camera 5 (leftand standard deviation (right).

Il — Person Runs Event

Our tracking system is producing trajectories §gon various detected foreground objects withia t
scene. For each position in the track we recordotiject velocity, size and compute the final dist@an
(distance between the track starting point and repgioint) as well as the total distance (total afise
travelled by the object). The “person running” egenwere detected by assessing by how much thenturre
velocity diverges from the learned statistics wattkkind of a one-sided t-student test. Let's say tha
observe an object with velocity we then compute the Velocity Outlier@) score at the confidence level
a based on the learned scene statistics

(V' Ml)

V =
Ol-a Zta,n-l\]Mz' Mlz/\/E

where ist, _, is the one sided t-student distribution witii degrees of freedom where n is the number of

(4)

observations involved in the computationldf and M,. In case of a person running evevi)_, should

capture the deviation from the mean velocity ake tzalues over 0.5. A confidence level is then coteg
for each observed track function of the averd@escore and the track quality:
. Final Distance
Conf,, =min(HV 1) — 5
PR (HVQ, 31 Total Distance ®)

Where E{VQ, _} isthe average outlier score observed over thatidur of the track. The ratio of the track
Final Distance over Total Distance penalizes trabks are too noisy.

In order to further reduce the number of falseratgronly events within the learned pedestrian niask
section I) were processed.

[l — Object Put Event

The “Object Put” detection was based on a very Erdpal background model approach described in [5].
Both the long term and short-term background modei® Mixture of Gaussians (MoG). The learning rate
for the short term was fixed to 1/30 and the loagrt rate to 1/200. The difference image between the
foreground images coming from the two models isitaecumulated over time. An example is shown on
Figure 4.

In order to reduce false alarms, the object hagkmlidated with the camera geometric model. Gadyts
with a height between 10% and 50% of the expectelbgtrian height are considered. The confidenas lev
for the event is derived from the average valudiwithe event ROI on the cumulative difference imag



Figure 4. Some frames for an ObjectPut event (leftcolumn); foreground difference image (center)
and alert images (left)

IV — Pointing Event

For the “pointing” event, we implemented an applodased on the learning of compound features
proposed recently by Gilbegt al [7][8]. The following steps are involved

1.
2.
3

4,
5

build an overcomplete set of Harris corners atowagispatial scale and in the temporal domain.
group corners within a 3x3x3 neighbourhood to faompound features

compound features are encoded using informationtad®l position, scale and corner type to
form transactions (or itemsets).

a data mining algorithm (APriori algorithm) is ajgal in order to extract frequent itemsets.
transaction rules and associated confidence lewvelgerived from the frequent itemsets.

The training was very limited due to the lack ofi¢i, only the pointing events in the first videacafera 1
in the development set were used. One issue wetodadkle is the large number of transactions ggird
during the training step (over 1 million transansovere generated here). Another issue is howki da
reliable decision on the presence of Pointing eémta scene where many other actions are takiscepl
(e.g. people walking).



Figure 5: Example of a Pointing frame with learnedcompound features shown as circles (left) and
corresponding probability map (right) where dark means high probability.

V - Results

Overall detection results present too many falaenad especially for PersonRuns and Pointing.

Event Person Runs Object Put Pointing

Act. Miss 0.196 0.839 0.964
Act. RFA (in 2110 232 440
Events/Hour)

Act. DCR 10.745 1.999 3.166

Table 1: Actual Miss rate and False Alarm rate foreach event.

Event Person Runs Object Put Pointing

Min Miss 0.944 0.955 0.988

Min RFA (in 68 0.394 228

Events/Hour)

Min DCR 1.285 0.997 2.127
Table 2: Minimum Miss rate and False Alarm rate foreach event.

Conclusion

For our first year in this competition, the objeetiwas to put in place our test environment andet@ble

to deliver results with in-house algorithms thatrevaeot necessarily optimal for the TRECVID video
corpus. We were not expecting to perform very wasllour system was initially designed for an outdoor
environment. In particular, our tracker is not penfing as it should on this kind of very compleeses.
The current background/foreground segmentationrifgo produces very fragmented blobs and needs to
be improved. Also we hope to finish our training 8ohead detector so that we can track only retevan
objects. The method used for Pointing will be fartimproved in order to handle a larger trainingfee
next year and we are planning to use it for Persordtd CellToEar.
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