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Abstract

In this paper, we describe the system jointly developed by
IBM Research and Columbia University for video copy
detection and multimedia event detection applied to the
TRECVID-2010 video retrieval benchmark.

A. Content-Based Copy Detection:

The focus of our copy detection system this year
was fusing three types of complementary fingerprints: a
keyframe-based color correlogram, SIFTogram (bag of
visual words), and a GIST-based fingerprint. However,
in our official submissions, we did not use the color cor-
relogram component since our best results on the training
set came from the GIST and SIFTogram components. A
summary of our runs is listed below:

1. IBM.m.nofa.gistG: A run based on the grayscale
GIST frame-level feature, with at most 1 result per
query, except in the case of ties.

2. IBM.m.balanced.gistG: As in the above run, but with
including more results per query, though on average
still less than 2.

3. IBM.m.nofa.gistGC: The result of the nofa.gistG
run, fused with results from GIST features extracted
from the R,G,B color channels.

4. IBM.m.nofa.gistGCsift: The result of
nofa.gistGC run, fused with a SIFTogram result.

the

Overall, the grayscale GIST approach performed best. We
found it produced excellent results when tested on the
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TRECVID-2009 data set, with an optimal NDCR that sur-
passed what we had achieved with SIFTogram previously.
The “gistG” runs also outperformed our other runs on the
2010 data, although we changed the SIFT implementation
we used this year which made it not directly comparable
with our previous TRECVID results. Our system did not
make use of any audio features.

B. Multimedia Event Detection:

Our MED system has three aspects to its design — a
variety of global, local, and spatial-temporal descriptors;
building detectors from a large-scale semantic basis, and
designing temporal motif features:

1. IBM-CU_2010_.MED_EVAL_cComboAll_1 :
bination of all classifiers.

Com-

2. IBM-CU_2010_-MED_EVAL_pComboIlBM+CU-
HOF_1 : Combination of global image features,
spatial-temporal interest points, audio features, and
model vector classifiers.

3. IBM-CU_2010_-MED_EVAL_cComboStatic_1
Combination of global image features, and model
vector classifiers.

4. IBM-CU_2010_MED_EVAL_cComboDynamic_1
: Combination of spatial-temporal interest points,
audio features, temporal motif, and HMM classifiers.

5. IBM-CU-2010_-MED_EVAL_cCombolBM+CU-
HOF_2 :Combination of global image features,
spatial-temporal interest points, audio features, and
model vector classifiers.

6. IBM-CU_2010_-MED_EVAL_cCombolBM-HOF_1 :
Combination of global image features, spatial-
temporal HOG points, and model vector classifiers.



7. IBM-CU_2010_-MED_EVAL_cComboIBM_1
Combination of global image features, spatial-
temporal interest points, and model vector classi-
fiers.

8. IBM-CU_2010_-MED_EVAL _cmodelVectorAvg_1
Run with 272 semantic model vector features.

9. IBM-CU_2010_MED_EVAL _cTemporalMotifs_1
Semantic model vector feature with sequential
motifs.

10. IBM-CU_2010_.MED_EVAL_cmvxhmm_1 : Seman-
tic model vector feature with hierarchical HMM state
histograms.

Overall, the semantic model vector is our best-performing
single feature, while the combination of dynamic features
outperforms the static features, and temporal motif and
hierarchical HMMs show promising performance.

1 Introduction

This year the IBM team has participated in the TREC
Video Retrieval Track, and submitted results for the
Content-Based Copy Detection and Multimedia Event
Detection tasks. This paper describes the IBM Research
system and examines the approaches and results for both
tasks.

For the Content-based Copy Detection (CCD) task, we
focused our work on analysis of the video frames, as op-
posed to audio, which we did not use this year. Although
local features such as SIFT have been shown in the past to
be very useful for detecting video copies, as the collection
size grows (as it has for TRECVID CCD since 2008) the
local feature-matching approach suffers from scalability
issues. So, we use exclusively frame-global features in
our matching process, although in the case of SIFTogram,
these frame-global features are derived from local fea-
tures. The most important change we made this year was
the addition of the GIST feature descriptor to the set we
extracted and tested. We used two GIST descriptors - one
computed from the grayscale version of the frames (aver-
aged R.G, B) and another, three times the size, computed
from the R,G and B channels independently. We found

that the grayscale GIST feature performed the best, com-
pared to our SIFTogram and color correlogram-based fin-
gerprints.

For the MED task, we emphasize three aspects in ex-
ploring effective methods for multimedia event detection.
Section 3 gives an overview and details on how using
a large number of semantic detectors, covering scenes,
objects, people, and various image types enhances event
recognition.

2 Copy Detection System

Figure 1 gives an overview of our copy detection system.
The two major flows are fingerprint extraction and finger-
print matching, which are explained further in the follow-
ing sections.

2.1 Fingerprint Extraction and Indexing

In this section we describe our process for generating fin-
gerprints from videos and indexing them. In section 2.2
we describe how query fingerprints are matched to refer-
ence video fingerprints.

2.1.1 Frame Sampling and Normalization

We sample frames from query and reference videos uni-
formly at a rate of one frame per second, and in the
process, we detect and remove frames with low entropy,
such as blanks. This eliminates useless feature vectors,
and many false alarms due to trivial matches. For the
GIST and color correlogram descriptors, we normalize
frames in an attempt to calibrate color appearance. We
median-filter in order to remove speckle noise, impor-
tant in areas such as borders. We then detect and re-
move borders of homogeneous colors to avoid spikes in
the color distribution. We resample the image to a size
of 176x144 in order to normalize scale, aspect ratio, and
reduce noise and compression artifacts. Finally, we per-
form contrast-limited histogram equalization, which nor-
malizes brightness, contrast, and to some extent, gamma.
The resulting image is color-quantized perceptually into a
166-dimensional HSV color space.
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Figure 1: System overview illustrating fingerprint extraction/indexing (left) and fingerprint matching (right).

2.1.2 GIST descriptor

The new descriptor we added to our system this year was
the GIST feature [10], which concatenates together the
spatially pooled Gabor filter responses in different scales
and orientations in different spatial blocks of the image
to characterize a scene. It is largely invariant to changes
in color, re-encodings of the video, missing frames, and
quite robust to pattern insertion as well. However, as
with many frame-global descriptors, it can be ineffective
on transforms that change the nature of the entire frame,
such as flipping, PIP, or heavy cropping. To extract the
320-dimensional feature, we used code derived from Tor-
ralba’s published version [10].

2.1.3 SIFTogram descriptor

We use the “bag-of-words” approach [11] to leverage the
retrieval power and invariance of SIFT features to color,
rotation, shift, and scale, while balancing computation
time. Following this method, we apply the Harris-Laplace
interest point detector and extract SIFT local point fea-
tures from all sampled frames. We use a sample of 1M
SIFT features from a training set of reference videos
to generate a codebook of 1000 representative clusters.
The centroids of these clusters become visual codewords,
which are used to quantize any SIFT feature into a dis-
crete visual word. For each frame, we then compute a
histogram of the codewords, making a global feature from
the set of local ones, which discards feature locations but
preserves feature co-occurrences and distributions. The

number of codewords is the dimensionality of the feature
vector, in our case, 1000. We used soft bin assignment and
a sigma parameter of 90. This “SIFTogram” feature is ro-
bust to changes in colors, gamma, rotation, scale, shift,
and added borders.

2.1.4 Color correlogram descriptor

The third descriptor we considered was the color correl-
ogram [4], which captures the local spatial correlation of
pairs of colors, and is a second-order statistic on the color
distribution. The color correlogram is rotation-, scale-
, and to some extent, viewpoint-invariant. It was de-
signed to tolerate moderate changes in appearance and
shape due to viewpoint changes, camera zoom, noise,
compression, and to a smaller degree, shifts, crops, and
aspect ratio changes. We extract an auto correlogram
in a 166-dimensional perceptually quantized HSV color
space, resulting in a 166-dimensional descriptor length
for the baseline correlogram feature vector. The correl-
ogram fingerprint performs well against mild to moderate
geometric transforms but does not handle gamma correc-
tion changes or hue/saturation transforms. Its sensitivity
to color makes it complementary to the SIFTogram and
the grayscale GIST feature.

2.1.5 Cross spatial layout

We adopt a “cross”-layout formulation of the correlo-
gram, which extracts the descriptor from two central im-
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bor lookup. We used the Fast Library for Approximate
Nearest Neighbor (FLANN)[8] to index all fingerprints.
We found that FLANN could speed up query times by a
factor of over 100, as compared to exact nearest-neighbor
search, without affecting accuracy substantially.

2.2 Fingerprint Matching and Scoring

To process a query video, we extract the SIFTogram,
GIST and color correlogram descriptors from all sampled
query video frames. For each query frame ¢;, we use
the corresponding descriptors to retrieve a set of k near-
est neighbors from the corresponding SIFTogram, GIST
or correlogram FLANN index. The resulting matches for
all query frames are grouped per video, forming a short
list of candidate video matches, each with a set of {¢;, ;)
matching pairs of query and reference video frames. We
then filter the candidate matches in two ways before scor-
ing them.

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0

Average Query Matching Time (sec)

Figure 4: NDCR vs. time for TV2008 data

2.2.1 Linear fit filtering

We use RANSAC [3] to estimate the best linear fit (match-
ing offset and slope) between the video times of query
frames and matching reference frames:

Time(r;) = offset + slope * Time(q;), Vi

We constrain the slope to be in the [0.8,1.2] range, al-
lowing up to 20% frame drops, speed-up or slow-down
of the query videos. Once the linear fit parameters are
estimated, we filter all reference frame matches that devi-
ate by more than 4sec from the estimated position in the
reference video based on the corresponding query frame
position. This soft filtering eliminates false matches while
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allowing matches from the general shot neighborhood of
the estimated match position.

2.2.2 Bi-partite match filtering

We further filter candidate matches by allowing each
query frame to match at most one reference frame, and
vice versa. This is essentially the problem of computing
a maximum weighted bi-partite matching, when consider-
ing the pairwise frame similarities as edge weights. While
there are exact solutions to this problem, such as the Hun-
garian algorithm, they can be expensive computationally.
We use a simple greedy heuristic that iteratively picks

Figure 7: Localization on TVO09 (video-only data)

the edge with highest weight (i.e., highest frame match
score), removes other edges sharing a vertex (i.e., same
query or reference frame), and repeats until all edges are
examined. This algorithm runs in O(|E|log |E|) time,
where |E| is the number of edges, or candidate frame
matches.

2.2.3 Matched segment aggregation and scoring

The remaining frame matches are aggregated into match-
ing segments and scored. In principle, there can be multi-
ple valid segment matches in the same reference video but
the TRECVID CBCD task evaluation considers at most
one segment match as valid, and penalizes the rest as false
alarms, even if they overlap a true copied segment. For
the purposes of this evaluation, we therefore force a sin-
gle matching segment per reference video, by taking the
union of all matching segments and allowing gaps in be-
tween. The final score is then a weighted combination of
the matched segment duration and density:

S(Q,R) = 100|g| + wz sim(qi, r;), )

where () and R are the given query and reference videos,
S(@Q, R) is the matching score between @ and R, |Q)| is
the total number of sample query frames (matched and
un-matched), {¢;} C @ are the subset of matched query
frames, {r;} C R are the corresponding matched refer-
ence frames. The left portion of Eq. 1 represents the den-
sity of the matched segment, accounting for potential gaps



between matched frames. It is also normalized with re-
spect to video duration so it is comparable across different
query videos. The right portion captures the “strength” of
the match by accumulating the pairwise similarity scores
over all matched frames. This is essentially the number
of matched frames, |g;|, weighted by the confidence of
each frame match. The density score favors short query
videos, due to smaller |@Q|, while the right component fa-
vors longer match durations and therefore longer query
videos. We balance the two factors using a weighted com-
bination of the scores, where the weight w of the match
strength is expressed relative to a weight of 100 for the
match density. The parameter w is tuned empirically, and
we used w = 30 in these runs.

2.2.4 Score Normalization and Fusion

Eq. 1 shows the overall match score for a single finger-
print descriptor, either SIFTogram, GIST or correlogram.
The final detection result for a given query can be a com-
bination of the normalized scores from the different fin-
gerprints. We use linear range normalization, dividing all
scores by the maximum observed score (per descriptor) on
a training set, to map all scores into the [0, 1] range. We
then fuse the two normalized scores using simple score
averaging.

We also leverage the information from multiple detec-
tors to improve the copy localization performance of the
system. Specifically, if two systems assert matched seg-
ments that are compatible (e.g., have similar linear fit
parameters), we take the union of the asserted matched
segments as the final matched segment. If the asserted
matched segments are conflicting, we use localization in-
formation only from the detector with the highest normal-
ized confidence score.

2.3 CCD Experiments

We performed several experiments on the prior years’ data
to select parameter values used in our system. Figures 2-3
show performance as a function of the number of near-
est neighbors, k, retrieved for each frame using FLANN,
and the weight, w, of the match strength relative to match
density from Eq. 1. The results show that performance is
quite stable with respect to both: values of k£ between 10

and 30, and w between 30 and 100, produce near-optimal
results for our features.

We also performed experiments relating accuracy and
processing time. Figure 4 shows the per-transform NDCR
cost as a function of the query matching time, computed
by varying the approximation quality of the FLANN-
based nearest-neighbor queries on the TRECVID 2008
dataset. FLANN allows each approximate k-NN query to
specify the maximum number of “node checks” to be per-
formed, which controls the approximation quality of the
k-NN results. We used values corresponding to scanning
between 0.01% and 1% of the reference index in order
to produce the operating points plotted in Figure 4. Per-
formance improves as node checks increase but flattens
out beyond a certain point. In other experiments, we have
used 1000 FLANN node checks per query, which corre-
sponds to scanning ~0.15% and 0.07% of the 2008 and
2009 reference sets, and maps to an average query time
of about 1sec on the 2008 dataset and 5sec on the 2009
dataset (which includes ~100 individual FLANN frame
queries per query video).

Figure 5 shows a comparison of the tested approaches
against all TRECVID 2009 official submissions in terms
of NDCR and mean query processing time. Overall
NDCR is computed by aggregating all queries, from all
transform types, into a single transform class, and com-
puting the best NDCR score for each submission across
all queries. The plot shows our GIST run achieves the
lowest overall NDCR and the fastest execution time com-
pared to the 2009 system results we were working with.
The next most accurate 2009 system in NDCR is more
than 50x slower than the GIST-based system. The total
query processing time, including query video decoding,
fingerprint extraction, and matching, was ~4 sec/query
for the GIST system running on a 4-core processor, or
more than 20x faster than real-time (comparable to the
correlogram system); the SIFTogram system was ~10
sec/query, or 9x real-time; and the fusion system’s time
was ~13 sec/query, or 7x real-time.

2.4 CCD 2010 Results

Figure 8 shows the results of the runs we submitted for
the three NOFA runs which we submitted. The fourth run
which we submitted was our gistG balanced run which
had scores indistinguishable from the gistG NOFA run in



figure 8. Since we did not use an audio feature descrip-
tor, we have aggregated the results by video transform in
this figure. The components of these submitted runs are
listed in the abstract. We chose these runs for submission
based on the performance of the component features on
the TV-2009 data, shown in figures 6 and 7. Since we did
not see an improvement in last year’s NDCR when fusing
with color correlogram, so we chose to rely on GIST and
SIFTogram for 2010. The SIFTogram features we gener-
ated this year, however, used a different implementation
which did not replicate the same feature values, rendering
the results not directly comparable to our previous ones,
and also, we believe, less effective. For reference we show
the best performing submitted TRECVID run in figure 8
as well. Looking at the relative performance of the GIST
feature on the 2009 data versus its performance with this
year’s data, we see an obvious drop. We believe this is the
case due to the more varied nature of the year’s data. We
observed in the results that several other participants, like
us, had the same results for all audio transforms of a video
query, indicating that they also chose not to process au-
dio. Relative to those runs, our video-only methods seem
to have performed well, but relative to the entire set of
submissions, there is a gap. We also note that in 2009,
excellent performance was achieved by other participants
such as CRIM, in large part due to audio processing. We
take the lesson that audio features are important, and will
investigate how they can be incorporated in our system in
the future.

3 Multimedia Event Detection

We emphasize three aspects in exploring effective meth-
ods for multimedia event detection. Our recognition sys-
tem incorporates information from a wide range of static
and dynamic visual features. In particular, we study event
recognition using a large number of semantic detectors,
covering scenes, objects, people, and various image types.
We find a semantic concept base descriptor to be the best-
performing single feature in our comparisons. We analyze
the temporal dimension of each video by testing different
sampling methods, applying frame-to-video aggregation
techniques both at the feature and at the prediction level,
and by exploring capturing short-term temporal motifs in
video events via sequential itemset mining, and clusters
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of hierarchical hidden Markov models.

An overview of our event detection framework is
shown in Fig. 9. There are three main parts for processing
and learning, presented left-to-right in the figure: video
processing / feature extraction, model learning and deci-
sion aggregation. The rest of this section will discuss each
part in detail.

3.1 Video processing

Each input video is processed a number of different ways
in order to extract frame-based and dynamic visual fea-
tures. Our system has three different modes to prepare a
video for feature extraction.

e Uniformly sampled frames. We decode the video
clip, and uniformly save one frame every two sec-
onds. These frames are later used to extract static
visual descriptors: local (SIFT), GIST, Global and
Semantic Model Vectors.

e Adaptively sampled keyframes. We perform shot
boundary detection using color histogram differ-
ences in adjacent frames, we then take one frame
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Video Level Modeling/Scoring

We investigated multiple layers of opera-

tion/representation: video vs frame level, static vs dynamic features, early vs. late aggregation (fusion).

per shot. This frame sampling scheme produces less
shots for the event videos since amateur videos tend
to have long and unsteady shots. By being tempo-
rally adaptive this scheme may decrease overall ap-
pearance diversity in the frames, yet it avoids over-
sampling from long shots.

e Down-sampled short video segments. We keep
short video segments for extracting spatial temporal
features (Sec. 3.3). The video sequence is downsam-
pled to five frames per second to reduce computa-
tional time, and the spatial temporal features are ex-
tracted within windows of four seconds each.

3.2 Static Features

We extract a large number of static image features from
the sampled frames/keyframes. These features capture a
wide range of image information including color, texture,
edge, local appearances and scene characteristics. We

build upon these features to extract the Semantic Model
Vectors (Sec 3.4) and carry out a comprehensive compar-
ison of state-of-the-art features for classification.

3.2.1 Local Descriptors

Local descriptors are extracted as SIFT [7] features with
dense spatial sampling for keyframes — we use 16 pix-
els per grid, resulting in approximately 12,000 points per
image, and Harris Laplace interest point detection for uni-
formly sampled frames. Each keypoint is described with
a 128-dimensional vector containing oriented gradients.
‘We obtain a “visual keyword” dictionary of size 1000 (for
keyframes) and 4000 (for uniformly sampled frames) by
running K-means clustering on a random sample of ap-
proximately 300K Interest point features, we then repre-
sent each frame with a histogram of visual words. For
keyframes we used soft assignment following Van Gemert
et al. [14] using o = 90.

In our combination runs we also included local features



computed by Columbia University, which extracted SIFT
with DoG and Hessian detectors at the sampled frames,
employed 500-d codebooks, and adopted spatial pyramid
matching for the full frame + 4 quadrants, obtaining a
5000-D total feature length.

3.22 GIST

The GIST descriptor [10] describes the dominant spatial
structure of a scene in a low dimensional representation,
estimated using spectral and coarsely localized informa-
tion. We extract a 512 dimensional representation by
dividing the image into a 4x4 grid, we also extract his-
tograms of the outputs of steerable filter banks on 8 orien-
tations and 4 scales.

3.2.3 Global Descriptors

In addition to the SIFT bag-of-words and GIST descrip-
tors, we extracted 13 different visual descriptors on 8
granularities and spatial divisions. SVMs are trained on
each feature and subsequently linearly combined in an en-
semble classifier. We include a summary of the main de-
scriptors and granularities. Details on features and ensem-
ble classifier training can be found in our prior report [2].

e Color Histogram: global color distribution repre-
sented as a 166-dimensional histogram in HSV color
space.

e Color Correlogram: global color and structure rep-
resented as a 166-dimensional single-banded auto-
correlogram in HSV space using 8 radii depths.

e Color Moments: localized color extracted from a
5x5 grid and represented by the first 3 moments for
each grid region in Lab color space as a normalized
225-dimensional vector.

e Wavelet Texture: localized texture extracted from
a 3x3 grid and represented by the normalized 108-
dimensional vector of the normalized variances in 12
Haar wavelet sub-bands for each grid region.

e Edge Histogram: global edge histograms with 8
edge direction bins and 8 edge magnitude bins, based
on a Sobel filter (64-dimensional).

Having a large diversity of visual descriptors is impor-
tant for capturing different semantics and dynamics in
the scene, as so far no single descriptor can dominate
across a large vocabulary of visual concepts and events,
and using a collection like this has shown robust perfor-
mance [2, 13]. The spatial granularities include global,
center, cross, grid, horizontal parts, horizontal center, ver-
tical parts and vertical center — each of which is a fixed
division of the image frame into square blocks (number-
ing from 1 up to 25), and then concatenating the descriptor
vectors from each block. Such spatial divisions has been
repeatedly shown robust performance in image/video re-
trieval benchmarks such as TRECVID [12].

3.3 Dynamic Features
3.3.1 Spatial-Temporal Features

We detect spatial-temporal interest points (STIP) [6] over
the down-sampled video segments (Sec. 3.1), within tem-
poral windows of 20 frames (four seconds). We then
compute histogram of gradients (HOG) and histogram of
flow (HOF) features from spatio-temporal regions local-
ized around each STIP. For both HOG and HOF features
we generated a codebook of 1000 words by clustering a
data sample of approximately 300K points. We then com-
puted bag-of-words histograms similar to those for the
SIFT features in Section 3.2, with soft assignment.

We explored three aggregation methods both for HOG
and HOF. The first is to build a single BoW histogram
directly for the entire video, resulting in a 1000 dimen-
sional descriptor (named HOG(F)_Pyr0). The second em-
ploys the Temporal Pyramid Matching scheme [17], with
the video temporally split into 2 and 4 segments. A BoW
histogram is computed for each shot, and the descriptors
are concatenated and weighted according to the temporal
level at which they were computed (0.25 for levels 0 and
1, 0.5 for level 2). As reported in Figure 13, we tested
two different pyramidal configurations: HOG(F)_Pyr1x2
(3000 dimensional, with whole video and two halves seg-
ments concatenated) and HOG(F)_Pyr1x2x2 (7000 di-
mensional, with whole video, two halves and four quar-
ters segments concatenated). Since multiple STIP can be
detected in the same frame, we also explored computing
a BoW histogram for each frame where STIP were found.
We then aggregated from frame level to video level using



the same methods employed for the static features and in-
troduced in the next Section, thus obtaining 1000 dimen-
sional vectors. We named descriptors obtained with this
third aggregation method simply HOG and HOF.

Columbia University also computed HOG and HOF
features following the same bag of words framework. For
each descriptor a 4000-D codebook was adopted, and fi-
nally HOG and HOF were concatenated in a single de-
scriptor.

3.3.2 Temporal motifs

Intuitively, an event consists of temporal and relational
combinations of individual semantic entities. For exam-
ple, in “two men on a vast ice ground, constructing an
igloo with chisels”, the individual visual concepts include
people, ice, tools, shelter, etc. We propose to use tempo-
ral and co-occurrence of concepts to enrich low-level and
semantic features. We take the Model Vector stream (ex-
tracted at keyframes) for each video, and extract temporal
(A followed by B and C) and concurrence (A appears to-
gether with B and C) patterns using the sequential pattern
mining tool SPAM [1].

3.3.3 Temporal patterns with hierarchical HMMs

In addition to temporal motifs, we’d also like to devise
ways to probabilistically represent temporal relationships
among individual semantic concepts. Dynamic graphical
models are natural tools for this purpose. And localized
nonlinear descriptors have recently been shown to be ef-
fective tools for recognition tasks in images. We adopt
hierarchical hidden Markov models (HHMM) to encode
temporal relations, because of its previous success in dis-
covering meaningful features [16, 15] and that there are
efficient learning algorithms which are applicable to large
datasets. We use an automatic model selection algorithm
to obtain the models, then we concatenate the hard- and
soft- state assignment for each stream and use a histogram
vector to represent a video.

3.3.4 Columbia Audio

Our fusion also included audio features extracted by
Columbia University using audio keywords, detected as
short-term sound onsets (every 32ms) and described using

MEFCC [5]. A Bag-of-audio-words model was employed
based on a 4000-d audio word codebook.

3.4 Semantic Model Vectors

Intuitively, complex temporal events can be described us-
ing a combination of elementary visual concepts, their re-
lationships and evolutions. To this end, we propose an in-
termediate semantic layer between low-level features and
high-level event concepts. This representation, named Se-
mantic Model Vectors, consists of hundreds of discrimi-
native semantic detectors, each coming from an ensem-
ble of SVMs trained from a separate collection of thou-
sands of labeled web images, and from a common collec-
tion of global visual features as described in Section 3.2
and prior report [9, 18]. These semantic descriptors cover
scenes, objects, people, and various image types. Each of
these semantic dimensions provide the ability to discrim-
inate among low-level and mid-level visual cues, even
if such discrimination is highly noisy and imperfect for
a new data domain. Our hypothesis is that the com-
bination and temporal aggregation of the semantic con-
cepts maps closely to complex video events, for example,
making_cake event is likely to include food in a kitchen
described with a hand closeup. The final Semantic Model
Vector descriptor results from the concatenation of the
280 semantic detectors for each frame. Note that this
representation (after being aggregated from frame level to
video level) is a lot more compact than most descriptors
introduced in Sections 3.2 and 3.3, as shown in Figure 11.

3.5 Model learning

One vs all SVMs with RBF kernel were trained, indepen-
dently for each category, based on each descriptor. During
training for one category, all the videos from the other cat-
egories (including the random one) were used as negative
examples. Parameters C' and v were computed though
grid search on a 5-fold cross validation, with a 70% train-
ing and 30% validation random splits on both positive and
negative examples of the development set. Once the best
parameters were determined, the SVM were retrained on
the whole development set.

Either sampling approach seen in Section 3.1 typically
produces multiple frames per video; this yields several



features vectors per video for each descriptor (exclud-
ing the Pyramid versions of the HOG and HOF features).
Given that the problem we investigate consists in classify-
ing whole videos and not individual frames, an aggrega-
tion process from frame level to video level is necessary.

We performed such aggregation both at feature level
(early fusion) and at prediction level (late fusion). For all
features besides Global, the descriptors extracted from the
individual frames were combined through average or max
into a single descriptor, representative of the whole video.

We also tested aggregation at prediction level, meaning
training a classifier at the frame level and then combining
the predictions on the individual frames of a test video
into a final score. Such approach was used for the Global
descriptor, for which we took the predictions of the en-
semble classifier on the frames of a video and averaged
them to obtain the score for the video itself.

Finally, we performed late fusion to combine the pre-
dictions of models trained on different descriptors, which
offer complementary information. First we grouped static
features and dynamic features separately, using linear
combinations with uniform weights. We then performed
late fusion involving all the descriptors in two ways: hier-
archical, as a combination of the static and dynamic sets,
and horizontal, as a linear combination of all the features.

3.6 Experimental Results and Discussion

In the following we discuss in detail the results emerging
from the experiments in terms of Mean Average Precision
(MAP).

3.6.1 Individual Descriptors Performance

First we compare the performance of event classifiers
based on individual descriptors. As reported in Figure
14, performances vary across categories, with AP rates
ranging from 0.15 to 0.3 for Assembling_Shelter and
Making_cake, while Batting_in_run is easier to recognize,
with AP rates from 0.49 to 0.62. However, some gen-
eral conclusions can be drawn from the MAP rates. From
the results presented in Figure 10 emerges that for any
static descriptor, feature extraction on frames obtained by
uniform sampling provides better MAP rates than adap-
tive sampling. Uniform sampling generates a significantly

larger number of frames, thus providing richer informa-
tion to the classifiers. Interestingly, the proposed Seman-
tic Model Vectors outperforms all the other features in
terms of Mean Average Precision (0.392), independently
from the sampling adopted.
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Figure 10: Mean Average Precision comparison between
the keyframe and uniform temporal sampling frame se-
lection methods. For each static descriptor we registered
a significant improvement when using temporal sampling,
and Semantic Model Vectors were the best single descrip-
tor in both cases.

Considering the large scale nature of the video event
recognition problem at hand, the space occupied by the
feature representation of each video is crucial. In Figure
11 are reported the number of kilobytes necessary to rep-
resent each video (after the feature frames to video aggre-
gation), for each descriptor. Semantic Model Vectors can
represent an entire video with its 280 dimensional feature
vector, making it not only the best performing descrip-
tor in terms of MAP, but also the most compact. SIFT,
which is the second best performing descriptor in term of
MAP, occupies approximately 15 times the space required
by Semantic Model Vectors. The Global descriptor, being
an ensemble of multiple descriptors, occupies the largest
amount of kilobytes.

3.6.2 Frame to Video Aggregation

As we discussed in Section 3.5, since each feature is ex-
tracted at the frame level, we must aggregate them to
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Figure 11: Mean Average Precision vs. Video descriptor
size (in kilobytes) based on individual video descriptors.
Semantic Model Vectors offer the most compact represen-
tation as well as the best recognition performance.

determine a single score for each video. We performed
an experiment on the Semantic Model Vectors, which is
the single best performing descriptor, to determine which
aggregation strategy works best. We compare feature
level versus SVM predictions aggregation. Aggregation
is achieved with an average or max operation.

The AP results outlined in Figure 12 clearly suggest
using feature level aggregation for all three categories.
Hence we employed this early fusion strategy for all the
individual descriptors. The results reported in all the
other Figures in this Section besides Figure 12 follow this
framework as well.

This result corroborates the initial intuition about the
complexity of the events we are examining. Classification
on a single or very few keyframes, whose influence would
weight considerably in the SVM prediction aggregation
stage, is not sufficient to correctly recognize these com-
plex video events. A broader context must be inspected
instead. Early fusion (or aggregation at the feature level),
allows each frame to contribute significantly to the final
video representation, therefore providing a more compre-
hensive description of the whole event.
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Figure 12: Semantic Model Vectors are extracted at ev-
ery keyframe, thus require a fusion from frame level to
video level. Fusing features from keyframes into a single
descriptor per video and learning a classifier on top of it
performs significantly better than learning a classifier di-
rectly on the frames and then aggregating the predictions
from all the frames into a score for the entire video.

3.6.3 Dynamic Features:
Analysis

Temporal Granularity

As explained in detail in Section 3.3, when considering
the bag of words approach for spatial-temporal features,
there are different options for building the histogram of
codebook words occurrences in a video: to bin all in-
terest points descriptors in a single histogram represent-
ing the whole video (HOG(F)_Pyr0), to employ a tempo-
ral pyramid matching framework to compute and weight
separate histograms for temporally separated segments
(HOG(F)_Pyr1x2 and HOG(F)_Pyr1x2x2), or to gener-
ate a histogram per spatio-temporal volume where STIPs
have been detected, and then perform a frame (where the
spatio-temporal cube is centered) to video aggregation
similar to what has been done for static features and de-
scribed in Section 3.6.2 (HOG and HOF).

We compare the MAP performances of such options in
Figure 13. The results show a significant predominance
of the frame to video aggregation, performed by averag-
ing BoW histograms computed around each frame cen-
tered spatio-temporal cube (HOG and HOF, in dark blue).
This result reflect the intuition that the inspected videos



are too long and complex to rely on a histogram count
over the entire video, or even segments of it which are
still too large (one half, on quarter). Such representations
tend to weaken the contribution of codebook words which
are discriminative for a particular event among the dis-
tribution of thousands of keypoint descriptors, many of
which are noisy from the point of view of the discrimi-
native representation needed for recognition. In particu-
lar, codeword distributions over short (four seconds in our
experiments) but potentially significant/discriminative se-
quences in a video have a reduced weight in standard
BoW representations, while they retain a higher weight
in the frame to video aggregation.

In order to alleviate this effect in the pyramid type rep-
resentations, one could think of increasing their granular-
ity by adding further levels in the temporal pyramid. Such
an idea has two major limitations. The first is the size of
the descriptor: already with a pyramid of depth 2, a 7000
dimensional vector is needed (against the fixed 1000 di-
mensions of the frame to video aggregation which was
used in Figure 11). The second lies in the hierarchical
weight given to higher levels in the pyramid. Finer scale
matches are weighted much more than coarse matches.
This is desirable if the consecutive, uniformly sampled
video sequences describing an event are aligned. The
large variety both in appearance and length of the in-
spected videos suggest that this is not necessarily always
the case. This could explain why we observed degrading
performances for the HOG descriptor as the number of
levels in the pyramid increased.

Temporal motifs and HMMM features are extracted
starting from the Semantic Model Vector outputs at
the keyframe level. Using the temporal motifs as de-
scribed in Section 3.3.2, we append the binary motif pres-
ence/absence to the original ModelVector, and we ob-
served that the detection accuracy improves significantly
in batt_in_run, a highly progressive event. Using the meth-
ods described in Section 3.3.3, we extract the HHMM fea-
tures from streams of model vectors. We partition the
272 input dimensions into 15 different clusters, result-
ing in about 800-900 states among all models. We train
an SVM on these redundant state histogram vectors, the
MAP (0.25) is comparable to other individual runs, and is
used one of the dynamic constituent runs.
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Figure 13: Mean Average Precision Retrieval perfor-
mances of Dynamic Features: the HOG and HOF ex-
tracted at video-level or at frames where STIP keypoints
where detected. HMM and temporal motifs operate on
ModelVetcors extracted at keyframes. A denser sampling
along the time dimension (STIP points) provided the best
performances.

3.6.4 Features Fusion

Our baseline approach consisted in training RBF kernel
SVMs based on individual descriptors. However, we no-
tice that such descriptor are inherently complementary un-
der different perspectives:

e Semantic Model Vectors operate on a higher seman-
tic level with respect to all the other ones.

e GIST, Global, SIFT, and Semantic Model Vectors
are inherently static, as they operate on individual
frames, while HOG and HOF are dynamic, as they
analyze spatio-temporal volumes within the videos.

e GIST, Global and Semantic Model Vectors are global
features that analyze a whole image, while SIFT,
HOG and HOF model patches localized around lo-
cal interest points.

Therefore we applied ensemble late fusion methods to
combine all event detection hypotheses generated by the
different approaches. We ensured that the scores from all
approached were compatible for fusion by applying sig-
moid normalization on the non-probabilistic predictors.



Assembling_shelter
0.4

Batting_in_run

0.35

Q. 025

< o2 - - .
015 Ny — N B
0.1 + — — — —
0.05 +— — — — —

0 A N A <
2 O
F & & F L
9 N
821
éo
Making_cake
0.45
0.4
035

a 0.3

< 0.25
0.2
0.15
0.1
0.05

0 - -
ATy & &0
F §F &g
9 N
b@
Qo
S

&L LSS o
[CENY S & X R L G X
G N & & & 9
& & 00 & &
@0 & N
S &

Figure 14: Retrieval performances of different event recognition approaches based on individual features (lighter
colors) and their combinations (darker colors). Average precision computed for each category and MAP over the

whole TRECVID MED dataset.

Fusion was performed by averaging prediction scores.
The mean average precision (MAP) scores are reported
in Figure 14.

We observed that a combination of static features
(ComboStatic, with Global, SIFT, GIST, Semantic Model
Vectors) better models events where intra class varia-
tion of iconic objects/settings visual appearance is rel-
atively limited (a cake for Making_cake, the baseball
field for and players outfits (including helmet and bat)
Batting_in_run), while combining dynamic ones (Combo-
Dynamic, with HOG, HOG_Pyr1x2, HOF, HOF_Pyr1x2)
performs better for ones where the evolution of actions
and appearance is more relevant then a single iconic im-
age (Assembling_shelter).

The combination proved to boost Average Precision
rates with respect to the individual descriptors for all the
events. The performance behavior of static and dynamic
features appears to be complementary across event cat-
egories. Hence we applied a hierarchical fusion (Com-
boIBM), which combines ComboStatic and ComboDy-
namic predictions. Such fusion further improved the
MAP rate, confirming that complementary nature of static

and dynamic features. We also experimented with an ag-
gregation of all the feature prediction directly, without
grouping them into subclasses. However, we did not reg-
ister significant performance differences with respect to
the hierarchical fusion.

In all the combination cases inspected, late fusion of
multiple descriptors resulted in a boost of MAP with re-
spect to the individual descriptors for all the events in
the dataset, thus confirming the complementary nature of
such features. The best MAP performance of 0.46 was
achieved by fusing all the features. Finally, integrating
also the runs produced by Columbia University (audio,
additional SIFT and HOG+HOF), we registered an fur-
ther boost in MAP performances over all events to 0.51.

4 Conclusions

In content based copy detection, we attempted to leverage
three types of complementary fingerprints: a keyframe-
based color correlogram, SIFTogram (bag of visual
words), and a GIST-based fingerprint. Although we did
not use audio features in this year’s system, we found that



GIST alone performed quite well, better than our other
descriptors.

For the MED task overall, the semantic model vector is
our best-performing single feature, the dynamic features
combination outperform the static features, and tempo-
ral motif and hierarchical HMMs shows promising per-
formance. Our best performance was achieved by fusing
these complementary methods together.
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