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Abstract

Our team participated in the “light” version of the semantic
indexing task. All runs used a combination of an image-level
dense visual words classifier and an object-level part based
detector. For each of the ten features, these two methods
were ranked based on their performance on a validation set
and associated to successive runs by decreasing performance
(we also used a number of different techniques to recombine
the scores). The two methods yielded a significantly different
performance depending on the feature, as expected by their
design: The χ2-SVM can be used for all feature types, includ-
ing scene-like features such as Cityscape, Nighttime, Singing,
but is outperformed by the object detector for object-like fea-
tures, such as Boat or ship, Bus, and Person riding a bicycle.

Our team did not participate in the collaborative annota-
tion effort. Instead, annotations were carried out internally
for all the ten features to control quality and keyframe ex-
traction, and to obtain region-of-interest annotations to train
the object detectors. Compared to last year, the image-level
classifier was significantly faster due to the use of a fast dense
SIFT feature extractor and of an explicit feature map to ap-
proximate the χ2 kernel SVM.

1 Introduction

Our team participated in the “light” version of the semantic
indexing task. We extracted our own keyframes for every
shot of both the TRECVID 2010 DEVEL and TEST data
sets. The DEVEL set was subdivided into two halves de-
noted TRAIN and VAL and used for training and validation,
respectively. This subdivision respects movie boundaries to
guarantee the statistical independence of the keyframes in the
two subsets. Ground truth labels for the DEVEL keyframes
were obtained by an internal team of annotators. New de-
velopments this year include: Complete annotation of all
the keyframes of the DEVEL set (Sect. 2); Fast dense SIFT
descriptor computation and PEGASOS with explicit feature

map for the image-level classifier (Sect. 3.1); discrimina-
tively trained part based model for the object-level classifier
(Sect. 3.2).

2 Annotations

Annotations were carried out (only for the DEVEL subset)
at the frame level for each of the ten features. For some of
the selected object-like features, Region of Interest (ROI) an-
notations were also carried out. After obtaining the first set
of ground truth labels, multiple rounds of refinement were
carried out to remove the errors in the annotation.

The refinement of annotations of the VAL set was carried
out by using a weak classifier as follows :

1. Train a classifier on the TRAIN set.

2. Re-rank all the images in the VAL set based on the clas-
sifier output.

3. Refine the annotations of the top 1000 ranked frames
and the bottom 1000 ranked frames.

Similarly the refinement of annotations of the TRAIN set
was done by using a classifier trained on the VAL set.

3 Method

Our classification scheme combines three ideas: (i) For
scene-like categories. we use a non-linear χ2 SVM based on
an approximated feature map and trained by using stochas-
tic gradient (PEGASOS, Sect. 3.1); (ii) For object-like cate-
gories, we have used the discriminatively trained part model
described in Sect. 3.2; (iii) We then combine the classifica-
tion scores of (i) and (ii) by a number of different techniques
(Sect. 3.3).



3.1 Pegasos SVM with Explicit χ2 kernel Fea-
ture Map

The image-level classifier is a non-linear SVM on top of a
bag of dense visual words (Sect. 3.1.1). To train a large-scale
SVM efficiently we use [5] (as implemented in the VLFeat
library [6]). While PEGASOS is a linear SVM solver, we
use the explicit feature map for χ2 kernel [7] to extend it effi-
ciently to use a χ2 (non-linear) kernel. The whole setup is
fast and efficient compared to traditional SVM techniques
that do not use the feature map idea. For example, on
our framework training a SVM using 100K frames requires
only 2 minutes and classifying 100K frames requires only 1
minute on an Intel Xeon CPU clocked at 1.86 GHz.

3.1.1 Feature Descriptors

We used Pyramid Histogram of Visual Words [1] to represent
an image. The Pyramid Histogram of Visual Words (PHOW)
descriptors consist of visual words which are computed on
a dense grid. Here visual words are vector quantized SIFT
descriptors [4] which capture the local spatial distribution of
gradients.

Local appearance is captured by the visual words distri-
bution. SIFT descriptors are computed at points on a regular
grid with spacing M pixels. We have used gray level repre-
sentations for each image. At each grid point, the descrip-
tors are computed over circular support patches with radii
r. Thus, each point is represented by four SIFT descriptors.
These dense features are vector quantized into visual words
using K-means clustering. Here, we have used a vocabulary
of 1000 words. Each image is now represented by a his-
togram of these visual words occurrences.

We have used M = 5, K = 1000 and radii r =
10, 15, 20, 25. To deal with the empty patches, we zero all
the SIFT descriptors with L2 norm below a threshold (200).

In order to capture the spatial layout representation, which
is inspired by the pyramid representation of Lazebnik et. al.
[3] , an image is tiled into regions at multiple resolutions. A
histogram of visual words is then computed for each image
sub-region at each resolution level.

To summarize, the representation of an appearance de-
scriptor for an image is a concatenation of the histograms
of different levels into a single vector which are referred to
as Pyramid Histogram of Visual Words (PHOW). We have
used two levels for the pyramid representation. The distance
between the two PHOW descriptors reflects the extent to
which the images contain similar appearance and the extent
to which the appearances correspond in their spatial layout.

3.1.2 Results

This method worked well for most of the scene like cate-
gories, (e.g. Nighttime, Cityscape, Singing, Playing Instru-

Category AP xinfAP
Training Set TRAIN TRAIN+VAL
Testing Set VAL TEST
Cityscape 0.49 0.11
Nighttime 0.34 0.12

Demonstration Or Protest 0.27 0.07
Airplane 0.21 0.13
Boat Ship 0.21 0.15
Singing 0.17 0.05

Table 1: Performance of the SVM image classifier. The ta-
ble reports the average precision of the method of 3.1 when
trained on TRAIN and evaluated on VAL, and TRECVID ex-
tended inferred AP when trained on TRAIN+VAL. To com-
pute average precision on TRAIN+VAL the complete and
cleaned annotations were used. In several cases the differ-
ence in AP and xinfAP is very large, suggesting either that
there is a significant statistical difference between the DE-
VEL and TEST data subsets, or that the accuracy of the xin-
fAP estimate is poor (xinfAP may still be adequate to rank
different methods).

ment, Demonstration or Protest). Results obtained on the
TEST set for different features are shown in Fig. 1 for Air-
plane Flying, Fig. 2 for Cityscape, Fig. 3 for Demonstration
or Protest, and Fig. 4 for Nighttime. Quantitative results are
reported in Table 1.

3.2 Object Detection with Discriminatively
Trained Part Based Models

A category detector was trained for object-like features (Bus,
Boat-Ship and Airplane-Flying).

3.2.1 Model

We used the part-based detector of [2], summarized next.
Object detection is inherently a difficult task because of the
significant variability in photometry, viewpoint and the intra-
class variability. This model uses a sliding window to detect
objects. HOG features in 8 × 8 pixel blocks are computed
over the image. The model is a mixture of deformable part
models, one for each object aspect, where each mixture com-
ponent has a global template (a root filter with coarse resolu-
tion) and deformable parts (part filters with finer resolution).
The global template is called the root filter which has a coarse
resolution and the deformable parts are called the part filters
which have a finer resolution. The root filter is denoted as F0

and the n part models are denotes (Fi, vi, di) and include a
part filter Fi, an fixed offset vi and an the parameters of an
elastic deformation di.



Figure 1: Top 15 shots from the TEST set (shown by keyframes) using the scene classifier for Airplane Flying category.

Figure 2: Top 15 shots from the TEST set (shown by keyframes) using the scene classifier for Cityscape category.

The model score at a certain image location is obtained
as the score of the root and part filters minus the cost of the
displacement of the parts (deformation):

score(p0, ..., pn) =

n∑
i=0

Fi · φ(H, pi)−
n∑

i=0

di · (dxi2, dyi2)

Here p0, . . . , p1 denote the root and part locations, dxi, dyi
denote the part displacements relative to their “neutral” loca-
tion p0 + vi. Ψ(H, pi) denote the HOG descriptor extracted
from a given part at a certain image location.

An overall score is computed for each root location p0 by

finding the best placement of parts:

score(p0) = max
p1,...,pn

score(p0, ..., pn)

3.2.2 Results

The model described above yields candidate bounding boxes
for each image along with a confidence score (see for exam-
ple Fig. 7). Since our objective is classification, we let the
score of an image to be the maximum score of any window
detected in it, and use this score for classification.



Figure 3: Top 15 shots from the TEST set (shown by keyframes) using the scene classifier for Demonstration or Protest
category.

Figure 4: Top 15 shots from the TEST set (shown by keyframes) using the scene classifier for Nighttime category.

3.3 Combining classification and detection

As described above, given the detector output, we assign the
classification score of an image to be the maximum score of
any window detected in it. At this point, both our detection
results and classification results are lists of 〈image, score〉
pairs. The two scores were combined by taking either (i) the
maximum, (ii) a linear combination, or (iii) borda count.
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Figure 5: Bicycle Model

Figure 6: Object Hypothesis
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Figure 7: Detections on Trecvid Test Data for category Air-
plane flying


