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ABSTRACT

We participated in two tasks: semantic indexing (SIN) and
instance search (INS).

SIN runs

We submitted 4 light runs, 2 with RBF kernel, 2 with a
kernel combining appropriate kernels for the different features.
Two runs were trained on the 2010 training set, two on the
2007 training set (for the 3 concepts shared between 2007 and
2010).

• L A JRS-VUT1 2: RBF kernel trained on 2010 set.
• L A JRS-VUT2 1: Combined kernel trained on 2010

set.
• L B JRS-VUT3 4: RBF kernel trained on 2007 set.
• L B JRS-VUT4 3: Combined kernel trained on 2007

set.

The combined kernel outperforms the RBF kernel on the
2010 data. For the RBF kernel, training on 2007 data yields
worse results, for the combined kernel no clear trend can be
seen.

INS runs

All runs use the same features and differ by the method for
fusing and ranking results from these features.

• F X NO JRS max max 4: For each shot, maximum
similarity of features of all query samples.

• F X NO JRS topK 4: Top-k results for each feature
(k = 1000/nFeatures).

• F X NO JRS w bestR 2: Weighted linear combination
of feature similarities, weights based on best ranked other
query sample.

• F X NO JRS w t100 3: Weighted linear combination
of feature similarities, weights based on number of other
query samples among top 100.

Features worked best for object queries, weighted fusion
was better. For persons and objects a single feature outper-
formed the best fused result, for other types fused results were
better than any single feature.

I. SEMANTIC INDEXING

For the semantic indexing task we use a set of low-level
features extracted from key frames and train a classifier
for each concept using SVMs. In the following, we briefly
describe the features used, and the kernels we used in the
experiments. We then discuss our results.

A. Features

1) MPEG-7: The following MPEG-7 [1] image features
were extracted globally:

Color Layout describes the spatial distribution of colors.
This feature is computed by clustering the image into 8x8
blocks and deriving the average value for each block. After
computation of DCT and encoding, a set of low frequency
DCT components is selected (6 for the Y, 3 for the Cb and
Cr plane).

Dominant Color consists of a small number of represen-
tative colors, the fraction of the image represented by each
color cluster and its variance. We use three dominant colors
extracted by mean shift color clustering [2].

Color Structure captures both, color content and information
about the spatial arrangement of the colors. Specifically, we
compute a 32-bin histogram that counts the number of times
a color is present in an 8x8 windowed neighborhood, as this
window progresses over the image rows and columns.

EdgeHistogram represents the spatial distribution of five
types of edges, namely four directional edges and one non-
directional edge. We use a global histogram generated directly
from the local edge histograms of 4x4 sub-images.

2) Gabor Energy: This descriptor is computed by filtering
the image with a bank of orientation and scale sensitive filters
and calculating the mean and standard deviation of the filtered
outputs in the frequency space. We applied a fast recursive
Gabor filtering for 4 scales and 6 orientations.

3) Bag of features (BoF): Local Difference of Gaussian
(DoG) points are extracted from each keyframe. To limit the
number of DoG points per image a filter is used to retain only
the 1000 DoG points with the highest contrast computed with
respect to the neighboring pixels in scale space. Next, 128
dimensional SIFT descriptors (4x4 subregions, 8 directions
for orientation histograms) are extracted for the filtered DoG
points using the interest points scale information and the



dominant orientation (computed from the gradients of a small
circular path around the interest point). We high cap and
normalize the features as described in [3].

To generate more generalized, higher-level features we
map each SIFT feature to codewords. These codewords were
generated in an off-line step using k-means algorithm on about
100.000 features from randomly selected Flickr images. Here
we use a codebook with 1000 codewords. Thus we get a
1000 dimensional BoF feature for each keyframe where each
entry states the number of times a specific codeword was
detected in this keyframe. To find the mapping between each
SIFT feature from a keyframe and its codeword, we select the
nearest neighbor in the codebook with Euclidean distance.

4) Number of faces: For each shot the number of faces is
detected in the reference keyframe by using the face detection
method implemented in OpenCV1.

B. Combined kernel

Kernel methods, most notably Support Vector Machines
(SVMs), have been widely applied to classification problems,
also due to the availability of toolkits such as LibSVM [4].
SVM based classifiers are also commonly used for concept
classification based on visual features. If we look at the
TRECVID [5] 2009 High-Level Feature Extraction (HLFE)
Task, all but 3 of the 42 submitters report the use of an SVM
variant in some part of their approach (e.g. for classification
based on low-level features or for fusion) [6]. Most of the
groups use some low-level features which require other dis-
tances than the Euclidean distance between feature vectors,
e.g. some of the MPEG-7 visual descriptors [7] or variants of
histograms. But only about half of these groups mention the
use of specific kernels for these features, while most seem to
use the commonly applied radial basis function (RBF) kernel.

Despite the wide use of MPEG-7 visual features in the
research community there is remarkably little work on defin-
ing kernels that appropriately model the proposed distance
functions. A kernel combining different MPEG-7 features
and considering the appropriate distance functions has been
proposed in [8], [9] and has shown to perform better on a
small still image data set.

We thus define a kernel that combines appropriate kernels
for the different features. The kernel is defined as

κcombined(x, x′) =
∏

i∈{mpeg7,gabor,bof,nfaces}

κi(x, x′), (1)

where the is κmpeg7 is the kernel for MPEG-7 features
described in [10]:

κmpeg7(x, x′) =
∏

i∈{cld,dcd,csd,ehd}

exp(−w̄iκi(x, x′)). (2)

The feature weights wi are defined as

1http://sourceforge.net/projects/opencvlibrary

wi(T ) =
var({di(x−i , y

−
i )|∀x−, y− ∈ T−})

var({di(x+
i , y

+
i )|∀x+, y+ ∈ T+})

, (3)

where x+ (x−) denotes a positive (negative) sample in the
training set T and di(·) is the distance function for feature i.
The weights are thus defined as the ratio of the variances of
the feature distances among the negative and positive samples.
The weights for the individual features are then normalized
to obtain w̄i = wi∑

j∈{cld,dcd,csd,ehd}
wj

. In contrast to [8] we

calculate the weights in advance and not iteratively during
training.
κgabor and κnfaces are RBF kernels on the respective parts

of the feature vector, and κbof is a histogram intersection
kernel

κbof (x, x′) =
n∑

j=1

min(xi, x
′
i), (4)

with n being the size of the BoF vocabulary.

C. Results

We have submitted 4 runs, using two different kernels
(radial basis function and the combined kernel described
above) and training on the 2010 and 2007 training sets.

1) Differences between kernels: Our hypothesis is that
the kernel, that combines the results of appropriate kernel
functions for the different features performs better than the
RBF kernel that treats all the input features stacked together
in one feature vector. The results are shown in Figure 1. In fact,
the combined kernel outperforms the RBF kernel for 6 out of
10 concepts in terms of infAP, and yields also better mean and
median infAP over the 10 concepts. This confirms the results
reported in [10] on the TRECVID 2007 HLFE data set, where
also slightly more than 50% of the concepts yield better results
with the MPEG-7 kernel than with the RBF kernel. The strong
improvement for demonstration and protest seems to be an
outlier. The concept telephone seems not to be represented by
any of our features, as the results are very poor with both of
the kernels.

2) Generalization over data sets: In order to investigate
how well the kernels generalize we trained both on the three
concepts that the 2007 and 2010 data sets have in common
(bus, boat or ship, demonstration or protest). As one would
expect, the results for the RBF kernel drop between 20%
and 50% when trained on the 2007 data instead on the
2010 data. The results for the combined kernel are different:
for one feature (demonstration or protest) the result is 94%
worse than when trained on the 2010 data, however, for the
others the increase is 167% (boat or ship) and 33% (bus)
respectively. One cannot draw a general conclusion from this
result, as there are specific issues with these features: For
boat or ship the combined kernel scored worse than the RBF
kernel on the 2010 data against the overall trend, while with
training on the 2007 data the results for both kernels are the
same, this relativates the very high increase. The definition
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Fig. 1. Comparison of infAP of the two kernels on the 10 concepts of the light run.

of demonstration or protest has slightly changed from people
marching in 2007, which might be one reason for the decrease
in performance, the other being that the score for the combined
kernel trained on the 2010 data is relatively high. However,
the weights for the different MPEG-7 features determined as
described above changed only moderately for this concept,
while there are significant difference of the weights for the
concept bus determined from the two training sets. For boat,
one feature double it’s weight, while the changes of the other
feature are less significant.

D. Conclusion

The results show that it makes sense to use appropriate
kernel functions for the features involved instead of the “off
the shelf” RBF kernel. Although there is not an improvement
for all concepts, the results are better for more then half of
the concepts and also the median infAP improves. Concerning
the generalization properties of the kernel across data sets it
is unfortunately not possible to draw clear conclusions.

II. INSTANCE SEARCH

Our system for the instance search task is structured as
follows. We use five different subsystems, each performing
the search task for a certain type of feature. For bag of
features, we use four different parameterizations, thus leading
to eight different subsystems in total. Each subsystem is
queried independently with each query sample and returns a
ranked result list with a similarity value for each result. We
thus have for each query number of samples × number of
subsystems results. We use different methods to fuse these
results in order to obtain the final ranked result list.

In the following, we describe the subsystems for the dif-
ferent features and the fusion methods. We then discuss the
results.

A. Subsystems

1) Gabor Face Recognition: We perform face detection
using the well known Viola-Jones AdaBoost approach [11] in
all keyframes. Every detected face region is further processed
to generate a 10240 dimensional feature using Gabor wavelets.
The Gabor features of all trainings keyframes (from the
tv9.sv.test set) are generated and stored in an off-line step.
This approach leads to a total number of 22856 face features
in our database.

Whenever an instance search is performed, face detection
and Gabor feature generation is done in all source-sample
images of the query (without cropped objects). For each
detected face, an approximated k-nearest neighbor search [12]
is then performed to find the best matches in the database
using Euclidean distance. The strategy for approximated k-
nn search was selected automatically and uses linear feature
algorithm in this case. As result of this subsystem a list with up
to 2000 shots is generated, according to the keyframes where
the matching faces were detected in. For queries where no
face was detected, an empty result lists is generated there. We
further utilize the queries meta information to use the Gabor
Face Recognition subsystem only for ’actor’ and ’character’
queries.

Our implementation is done in C++ and uses the OpenCV
library [13] for face detection, FFTW library [14] for Gabor
feature generation, and the FLANN library [3] for approxi-
mated k-nn search.
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Fig. 2. Comparison of infAP of the three shared concepts for the different kernels trained on 2007 and 2010 data sets.

2) BoF Matching: BoF Features are generated in the same
way as described in the SIN section I-A3 using filtered DoG
interest points, SIFT features and codebooks that are generated
with k-means in an offline step. In contrast to the SIN task, we
generate two codebooks with a different number of codewords
here. The first codebook has a size of 100 and the second
a size of 1000. For both codebooks one BoF feature is
generated for each keyframe in the test set, which leads to
a database that consists of 153133 features for each codebook
size. Furthermore, we have used two different approaches to
generate BoF features for queries. On the one hand, we have
used the whole source-sample images as input. On the other
hand, we have used the cropped objects where no background
is shown. The combination of different codebook sizes and
different query images leads to 4 different configurations.

For BoF matching of each sample image from a query
against the database we use a k-nn search. Thereby the
distance between a query feature Q and a database test feature
T was computed with the histogram intersection:

d =
i<cbSize∑

i=0

max (Q (i) , T (i))− T (i)

where i is the current codebook index. This histogram inter-
section was chosen because the query images (at least in the
cropped BoF version) contain only the query object while the
keyframes in the database that show the query object usually
contain additional background objects.

3) SIFT: SIFT [3] is used as another subsystem in the
instance search task. For each query versus database image
match, SIFT keypoints and its corresponding descriptors have
been extracted. Only interest points inside the query object
ROI are considered. For each query image descriptor its

nearest neighbor (Euclidean distance) in the analyzed image
is taken in order to vote in a 2D-histogram for the query’s
position (scale and orientation have been omitted). The 2D-
histogram’s width and height are ten times smaller than the
original image’s dimensions. If a bin in the 2D histogram has
more than five votes, a hit has been assumed. The higher the
histogram’s peak, which means many consistent descriptor
matches w.r.t. position, the higher the ranking score of the
analyzed image.

In contrast to Lowe’s proposal of using a ratio of the best
and second best descriptor match, this approach takes the best
match without regarding the second best. Practice has shown
that similar descriptors originating from different locations in
the image often block each other which results in a missed
object hit. For object detection an additional assumption is
made, which holds most of the time: There is a maximum of
one object instance in an image. This assumption eases object
detection because only one peak in the histogram has to be
found. Due to the SIFT descriptors’ distinctiveness, matching
descriptors originating from the same object locations (both
query and database image) focus their votes to the same
histogram bin, if an object exists. In contrast voting entries
in the histogram are widespread if the object does not exist in
the image, preventing to form a peak in the histogram.

4) Histogram of oriented gradients (HOG): HOG [15] is
an established feature developed initially for fast detection
and tracking of pedestrians. Meanwhile, it turns out to be
useful for detection of other objects as well. HOG describes
intensity gradients by a gradient magnitudes histogram bins
with a fixed number of bins according to their orientation. In
order to utilize the spatial information, a rectangular detection
window is split into sub-regions called “cells”. We divided



the orientations from 0 to 180 degrees into 9 HOG-bins. The
rectangular regions are divided into 2×2 cells or 1×4 in case
of landscape format query sample as the zebra crossings. To
handle the scale problem, the cell size of a search window
starts from 8×8, 16×16 and 32×32 for small size (≤ 1000
pixels), middle size (≤ 10000 pixels) and large size (> 10000
pixels) query objects, respectively. Then we enlarge the search
window size by factor 1.5 and 2.0. E.g., for small query sample
with less than 1000 pixels, 8 further runs with cell sizes 8×12,
8× 11, 12× 8, 12× 12, 12× 16, 16× 8, 16× 12 and 16× 16
are done. Due to the large amount of keyframes, we shift the
search window for 1/4 cell size, but at least 4 and at most 16
pixels. The features with 36 HOG-bins in total are normalized
that the L2-norm equals to 1. The Euclidean distance is used
to compare two histograms.

5) Region covariance descriptor: Region covariance [16]
is a representation for rectangular image regions where a
covariance matrix is used to describe the distribution, or more
precisely the correlation of features. This descriptor is robust
against noise and illumination changes. The covariance matrix
provides a natural way to combine different feature types
such as pixel color, pixel intensity and image gradients, etc.
Especially, the spatial arrangement of the feature points can
be taken into account by associating the pixel coordinates.
Since the covariance matrices do not lie in a Euclidean space,
an eigenvalue-based distance function is used to measure the
similarity between two d× d-covariance matrices C1 and C2

d(C1, C2) =

√√√√ d∑
i=1

[lnλi(C1, C2)]2

where λi is the i-th eigenvalue of the generalized eigenvalue
problem C1x = λC2x.

For the instance search, the x-, y-pixel coordinates, the
RBG-color values and the first order derivatives of the pixel
intensity are used. The first order derivatives are calculated
using a Sobel-filter with the same window size as for HOG
method. The cell structures are skipped since the spatial infor-
mation is already captured in the region covariance descriptor.

B. Fusion methods

We compare four different methods for fusing the results
per subsystem and query sample. Two simple methods are
only based on the similarity values in the result lists, and two
use feature weighting based on the similarity values of other
samples from the same query.

For most of the queries all subsystems were used, with
the following exceptions: For person and character queries,
HoG and region covariance were not used, as preliminary
experiments indicated that they were not performing well for
these types of queries. The Gabor descriptor was applied only
to query samples, in which a face has been detected. This was
the case in all character queries, all but one object query, but
also in the location query and in two of the object queries.

The first of the simple fusion method determines the score
for each shot as the maximum similarity of all features of all

samples for the query. The shots are then ranked according to
these scores and the top 1000 shots are reported. The other
method takes the top-k shots for each feature and sample,
where k is 1000 over the number of features used for this
query and then reranks the results based on the similarities
from the single features.

In order to weight the features, we determined for each
feature the similarity scores between a query sample and
all the other samples of the same query. The ranks of the
other samples in the list of similarities from matching against
the database is determined. Then two different weights are
calculated:
• Best rank: For each query sample and feature, the best

ranked other sample from the same query is determined.
The mean best rank r̄i for feature fi is calculated from
N query samples as

r̄i =
∑N

k=1(ri,k)
N

, (5)

the weight is

wbestR(fi) =
max∀fj (r̄j)− r̄i∑
∀fk

max∀fj
(r̄j)− r̄k

. (6)

• Number in top 100: For each query sample and feature,
number of other samples from the same query ranked
among the top 100 n100i is determined. The weight is
then given as

wt100(fi) =
n̄100i∑N

k=1 n̄100k

, (7)

with n̄100i being the mean number of samples among
the top 100 for the different query samples.

For both types of weights, the fused score for each shot is
calculated as a weighted sum of the scores for each feature of
the maximum matching query sample. The result list is then
reranked according to the fused score and the top 1000 shots
are reported.

C. Results

The results for the individual queries and the mean MAPs
of the query types are shown in Figure 3. Over all queries, the
weighted fusion methods perform better than the simple ones
with 0.0066 for weighting based on the number ranked among
the top 100 and 0.0087 for weighting based on the top ranked
sample compared to 0.0051 for max/max and 0.0059 for top-
k. As most of our features do not specifically target person
recognition, the results for object queries are better than the
overall results with MAPs for all fusion methods above 0.01.
The best fusion method is still one of the weighted methods,
but the improvement is only minor.

We also analyzed the performance of each of the subsys-
tems, the results are shown in Figure 4. For the mean over all
queries, the Gabor face feature yields a slightly higher score
than the best fused result, although it has not been applied to
all the queries. SIFT scores only slightly worse than the best
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Fig. 3. MAP for the different fusion methods for each of the concepts and means (of query category and overall).

fused result. For person queries the Gabor descriptor scores
clearly better than the best fused result, the other features
score clearly worse. For object queries SIFT outperforms the
best fused result by about 50%. For character queries and
the location query the best fused result outperforms all single
features.

It has to be noted that due a mistake in generating the feature
databases, some shots were reported more than once in the
results. This means that possible some more relevant shots
could have been added at the end of the result list. However,
as this applies only to the least relevant shots, the impact on
the overall results is negligible.

The reported runtimes are calculated as follows. The run-
times are the sums of the response times of all subsystems,
assuming that these queries are performed in a serialized
way on a single core system. As some subsystems do some
preprocessing or indexing while other subsystems do all re-
quired processing on the fly, we have included preprocessing
times in order to be independent of these differences in
implementations. The system can be very easily parallelized
by running the queries for each sample and each subsystem
on separate cores/machines. As fusion is only done on the
result lists, the time needed for fusion is minimal compared
to feature-based matching.



D. Conclusion

Overall the weighted fusion methods perform better than
the simple ones. However, for homogeneous groups of queries
(such as person or object queries) single features outperform
even the best fused results. In this cases the influence of the
fusion method is also only minimal. The results show that no
fusion method is satisfactory, as the weight of the best feature
is diminished, so that the best fused result is worse than the
best single feature. This issue needs to be addressed in future
research.
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Fig. 4. MAP (log scale) for the different features for each of the concepts and means (of query category and overall).


