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Abstract

This notebook paper summarizes Team NEC-UIUC’s ap-
proaches for TRECVid 2010 Evaluation of Semantic Index-
ing. Our submissions mainly take advantage of advanced
image classification methods using linear coordinate cod-
ing (LCC) of local features powered by the distributed com-
puting software Hadoop. For every video shot, we evenly
sample key frames and extract dense local features includ-
ing DHOG and LBP, which are encoded by linear coor-
dinate coding. Then, for every concept large-scale linear
SVM classifiers are trained based on spatial pyramid of
LCC features. Finally, we employ multiple instance learn-
ing to rank the video shots according to the SVM scores of
individual frames. Our systems achieve mean extended in-
ferred average precision (mean xinfAP) 7.40% for the 30
concepts evaluated by NIST and mean average precision
28.63% using 1/5 of the development data as the validation
set for the total 130 concepts.

1. Introduction

Content-based video semantic indexing for large scale
internet video footages is a challenging problem for com-
puter vision and machine learning, which is of great inter-
ests to video hosting and archiving services. The challenges
include the huge amount of data to analyze compared to
static images and the diverse nature of different concepts,
e.g., human attributes, scenes, objects, and actions,etc.

TRECVid 2010 Evaluation of Semantic Indexing [5]
uses a new dataset called Internet Archive Videos provided
by NIST, which are real user uploaded video clips. Both
development and test sets include 200 hours videos with
duration between 10 seconds to 3.5 minutes. Given the test
collection, master shot reference, and the concept defini-

tions, this evaluation task requires to return for each of the
130 concepts a list of at most 2000 shot IDs from the test
collection ranked according to the likelihood of presence of
that concept in video shots. To our best knowledge, this is
the largest public available internet video dataset so far.

The system developed by Media Analytic group at
NEC laboratories America mainly utilizes frame-based im-
age classification methods using linear coordinate coding
(LCC) [10] of local features and linear SVM classifiers. To
handle the huge computation of video data, we extensively
leverage the distributed computing software Hadoop [1] to
perform feature extraction, SVM learning, and classifica-
tion. To optimize the rank of related video shots of a con-
cept, we employ multiple instance learning [8] to generate
the rank of shots from SVM scores of frames. The details
of the system will be present in Sec.2 with the experiments
in Sec.3.

2. System Overview

The understanding of video contents ideally demands for
fusion of multiple modalities from meta data, closed cap-
tions, audio, and visual features. The audio features may
be particular useful to distinguish some concepts, such as
singing, however, the subset of concepts concerning with
audio features may need manual selection. In our system,
we apply the same approach to all concepts based on image
classification. The correlation or interaction among frames
are considered merely in the pooling stage to generate the
likelihood of shots.

In our system, for one frame sampled from a shot,
we conduct local feature extraction, feature encoding, and
SVM classification. Afterwards, given the master shot ref-
erences, we employ multiple instance learning to generate
the likelihood of a shot from the corresponding frame-based
SVM scores. For one frame, we densely extract two kinds
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Figure 1. The system diagram of NEC-UIUC’s approach on videosemantic indexing.

of local features, the DHOG features, where DHOG is es-
sentially a fast implementation of the SIFT descriptor [4],
and the local binary pattern (LBP) features [6]. For each
type of feature, we train a 4096-dimensional codebook and
conduct linear coordinate coding [10]. Each frame is di-
vided to 10 cells, the LCC codes in all cells are concate-
nated to generate the frame-based features which are fed
to the SVM learner. With the frame-based SVM scores of a
concept, we maximize thenoisy-ORprobability of the shots
in the training set to generate the shot-based likelihood. The
entire procedure is summarized in Fig.1.

2.1. Feature Extraction

Given the shot boundary definition in the .ssb files [5],
we evenly sample the key frames every 7 frames in a shot.
For the short shots, we try to ensure there are at least 7 key
frames, although there are quite a few very short shots with
even less than 7 frames. Using this sampling scheme, we
end up to process 2.01 millions frames for the development
set and 2.28 millions frames for the test set.

For each frame, we calculate both dense DHOG [4] and
LBP [6] features every 8 pixels with 4 patch sizes,i.e., 7×7,
16× 16, 25× 25, and31× 31. For each type of feature, we
learn a 4096-dimensional codebook using clustering, which
is used in the linear coordinate coding [10] to encode the
dense local features.

The spatial pyramid matching (SPM) [3] of interest point
descriptors demonstrates superb performance in object and
scene categorization due to its power to delineate the spatial
layout of images. Following the idea, we divide the frame
to 10 cells,i.e., 1 × 1 and3 × 3, and concatenate the LCC
codes of each cell to represent the frame. Thus, the frame-
level feature is 40960-dimensional. Using float numbers to
store the features, the sizes of the frame-level features are
306G bytes (2.01M×40960×4) and 348G bytes (2.28M×
40960× 4) for the development and test set respectively.

2.2. SVM Training

For each of the 130 concepts, we learn a linear binary
SVM classifier from the frame-level features. Since the sub-
set of labeled shots for each concepts are different from each

other, we have to generate separate training sets for differ-
ent concepts. The manipulation of the 306G bytes training
features turns out to be a challenge for us. After creating the
data, an even bigger challenge is how to train SVM classi-
fiers on such huge amount of data.

We utilize Hadoop to train the 130 binary SVM classi-
fiers in parallel. The challenge in training lies in the fact that
training data sets are often way too big to be fitted into mem-
ory. Although there exist some off-the-shelf packages that
handles memory issues [2, 9], we found them computation-
ally expensive – they typically need to go through data many
times. To resolve the difficulties, we developed a novel av-
eraged stochastic gradient descent (ASGD) method for train
linear binary SVM classifier. The ASGD algorithm is ad-
vantageous. First, it is memory efficient – it only needs to
load one data sample at a time, although in practice we load
data chunk by chunk to speed up loading. Second, because
of the memory efficiency, it is easy to run multiple ASGD
algorithms in parallel on multi-core machines. Third, it can
be proved that, by simple averaging schemes, the ASGD
algorithm is able to achieve similar convergence rate as so-
phisticated second-order stochastic gradient descent [7], but
it avoids the expensive computation of inverse Hessian ma-
trix (or its approximation). Because of its fast convergence
property, the ASGD method often achieves fairly good clas-
sification after a single pass of data especially when training
data are not too few. In our experiments, we set the maxi-
mum pass for ASGD to be 5.

2.3. Ranking with Multiple Instance Learning

Even one frame in a shot is related to a concept, this
shot shall be regarded as positive to the concept. There-
fore, the video shot indexing is essentially a multiple in-
stance learning problem. Thus, given the SVM scores of
the frame-level features, we employ the multiple instance
learning method [8] to generate the shot-level likelihood for
each concept.

Denote the training shot set of a concept byS =
{si}, i = 1, · · · , N and the SVM score of a frame in the
shotsi by xij , wherej is the index of frames. We calculate



the probability of one frame being positive to a concept by

pij = 1 − (tanh(−
axij + b

2
) + 1)/2, (1)

wherea andb are two scalars to optimize. Then, the proba-
bility of a shot being positive is anoise ORof the probability
of frames, that is

pi = 1 −
∏

j

(1 − pij). (2)

Thus, we can compute the log likelihood of the training set

log(L(S)) = log(
∏

pi
ti(1 − pi)

1−ti), (3)
whereti ∈ {0, 1} is the label of the shot. After maximizing
log(L(S)) with respect toa andb, we employ Eq.2 to rank
the video shots and return the top 2000 shot IDs.

We have also tried the mean pooling and max pool-
ing methods to rank the shots with the frame-based SVM
scores. By using the multiple instance learning, we observe
1% improvement in terms of the mean average precision on
the validation set.

2.4. Distributed Computing with Hadoop

For both development and testing set, there are more than
2 millions frames to process, moreover, we need to train 130
linear SVMs. Efficient computation and management are
critical issues for this video semantic indexing task. Thus,
we extensively leverage the distributed computing software
Hadoop [1] to manage the computation, which implements
the Map Reduce framework and a distributed file system,
i.e., Hadoop File System (HDFS). In addition, Hadoop is
capable of managing a large number of data intensive jobs
and HDFS can tolerate storage node failure without suffer-
ing data loss.

The experiments are mainly performed on a cluster of
64bit blade servers with Intel Xeon 2.5GHz CPU (8 cores)
and 16GB RAM, which are managed by the Hadoop. Us-
ing about 10 servers in the Hadoop, we finish the feature
extraction of DHOG features for the development set in
around 40 hours, which significantly accelerates the com-
putation by 20-40 times. It turns out the network bandwidth
becomes the bottleneck when the computation nodes need
to frequently access data on the HDFS. Taking advantage
of the distributed computing infrastructure, we manage to
finish the video semantic indexing task in two weeks.

3. Experiments

For both the development set and test set, there are 200
hours of short video clips with over 110K and 140K shots
respectively. The development set is partially annotated for
the 130 concepts. The statistics of the video shots and the
number of labeled positive shots are summarized in Table1
and Table2, where we observe that there are about 30%
shots with less than 10 frames and for more than one half
of the concepts the numbers of positive shots are less than
500.

Table 1. The statistics of the video shots in the developmentand
test set.

Development set Test set
# frame # shots ratio # shots ratio
≤ 1 2376 2.00% 3066 2.12%
≤ 3 14907 12.57% 21640 14.93%
≤ 10 32389 27.31% 42068 29.02%
≤ 30 53415 45.05% 68343 47.15%
≤ 60 72626 61.25% 89852 61.98%
≤ 90 83779 70.65% 102682 70.83%
≤ 200 101658 85.73% 123717 85.34%
≤ 500 112194 94.61% 137026 94.52%
≤ 1000 115752 97.61% 141538 97.64%
>1000 118581 100% 144963 100%

Table 2. The statistics of the labeled positive shots.
# positive shots 5-100 101-500 501-1K
# concepts 31 41 17
# positive shots 1K-5K 5K-10K >10K
# concepts 30 8 3

Table 3. Validation performance ofDHOG-SVM, LBP-SVM, and
their combination

DHOG-SVM LBP-SVM DHOG+LBP-SVM
meanAP 27.58% 18.46% 28.63%

3.1. Validation Performance

We employ 4/5 of the development set as the training set
and the remaining 1/5 as the validation set. For the valida-
tion set, we calculate the mean average precision (meanAP)
of top 2000 shots without sampling. As shown in Table3,
the results of the DHOG features is superior to that of the
LBP features. The combination of two features improves
the meanAP by about 1%. The accuracy is varying a lot
across different concepts, some are very good. The detailed
results are shown in Table5 in the Appendix.

Note this validation set is much smaller than the test set.
We return 2000 shots from around 10K shots, in contrast,
we need to submit top 2000 shots out of 140K shots from
the test set. Thus, the meanAP in Table5 may be an opti-
mistic estimation.

3.2. Evaluation Results from NIST

NIST selectively evaluated 30 concepts using the mean
extended inferred average precision (mean xinfAP). Our
system, which combines the DHOG and LBP features,
achieves mean xinfAP 7.40%, as shown in Table4.

Our mean xinfAP 7.40% outperforms most of the sys-



Table 4. Evaluation results ofF A NEC-UIUC-44 by NIST

Concept xinfAP Concept xinfAP Concept xinfAP Concept xinfAP
Airplane-flying 0.106 Animal 0.052 Asian-people 0.013 Bicycling 0.05
Boat-ship 0.117 Bus 0 Car-racing 0.019 Cheering 0.023
Cityscape 0.117 Classroom 0.022 Dancing 0.032 Dark-skinned-people 0.124
Demonstration-or-protest 0.11 Doorway 0.071 Explosion-fire 0.03 Female-face-closeup 0.117
Flowers 0.037 Ground-vehicles 0.13 Hand 0.037 Mountain 0.234
Nighttime 0.083 Old-people 0.035 Running 0.019 Singing 0.076
Sitting-down 0 Swimming 0.347 Telephones 0.006 Throwing 0.007
Vehicle 0.149 Walking 0.058
Overall 0.074

tems (or 90% of the systems) in the evaluation. The results
are fairly good considering we combine limited image fea-
tures. The best system in the evaluation gives mean xin-
fAP 9.0%. However, there are two main issues. First, the
SVM training suffers from the extremely unbalanced train-
ing data. For example, for the conceptBus, there are only
31 positive shots with 68980 negative shots, and forCar-
racing, there are 21 positive samples with 101343 negative
samples, which poses severe challenges to the training algo-
rithm. Second, the lack of motion features makes the sys-
tem can hardly detect some actions not contingent to certain
scenes, such asSitting-down.

4. Conclusions

We test our advanced image classification methods on
the video semantic indexing task. Our experiments interest-
ingly show that using only image classification we achieve
fairly good results. In addition, for large scale image and
video analysis task, it is critical to take advantage of the
emerging distributed computing software and infrastruc-
ture to ease the management of computation. Our future
work includes incorporation of motion features and dif-
ferent treatments to concepts related to static objects and
scenes or actions.
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Appendix

The detailed performance on the validation set is shown
in Table5. The concepts are ranked according to the number
of positive shots. The average precision is calculated for the
top 2000 shots on the 1/5 of the original development set.
The mean average precision is 28.63%.



Table 5. Validation results on 1/5 of the development set.
Concept # Pos Shot # Neg Shot Avg. Precision Concept # Pos Shot # Neg Shot Avg. Precision
Person 36305 18841 23.71% Outdoor 18800 12723 53.45%
Face 11084 33850 38.08% Male-person 7945 37152 31.73%
Indoor 7574 29150 53.49% Adult 7463 37099 28.15%
Vegetation 7051 13268 48.12% Daytime-outdoor 6570 24580 41.98%
Overlaid-text 6431 11217 56.68% Trees 6081 11186 60.14%
Single-person 5723 41352 33.67% Female-person 4888 42903 33.93%
Entertainment 4734 14904 34.40% Computer-screens 4549 12901 66.70%
Sky 4491 26885 56.13% Plant 4180 27910 30.90%
Building 3893 27424 44.70% Vehicle 3657 51050 29.18%
Suburban 3386 28166 26.76% Singing 3151 45244 17.52%
Road 2956 29299 39.60% Streets 2929 29235 36.32%
Dark-skinned-people 2590 46244 37.13% Celebrity-entertainment 2426 46226 22.87%
Landscape 2387 29076 53.06% Walking-running 2379 51778 20.15%
Ground-vehicles 2236 60415 22.57% Actor 1883 48418 5.45%
Instrumental-musician 1739 48940 36.62% Waterscape-waterfront 1659 31270 42.94%
Scene-text 1547 16084 23.78% Sitting-down 1505 48167 17.53%
Athlete 1212 49831 10.12% Car 1208 70006 31.49%
Two-people 1206 49397 20.12% Explosion-fire 1194 16600 38.49%
Hand 1105 16336 17.25% Beards 1081 55031 9.30%
Walking 1061 62130 14.08% Crowd 1044 50173 32.14%
Politics 1024 15905 37.23% Doorway 986 19175 33.82%
News-studio 961 45855 71.15% Female-face-closeup 892 61077 24.72%
Sports 882 53363 4.93% Animal 786 58699 9.46%
Beach 781 32075 47.64% Reporters 740 50298 68.67%
Girl 651 60487 7.01% Teenagers 612 49206 18.10%
Nighttime 575 36579 16.76% Computers 572 16964 24.59%
Boy 561 56827 3.00% Cityscape 558 32794 46.67%
Chair 555 16955 41.77% Anchorperson 551 49945 78.29%
Mountain 519 35915 29.12% Charts 518 17077 41.43%
Politicians 483 59790 46.42% Snow 476 36714 40.85%
Dancing 466 52750 4.33% Highway 371 32538 58.62%
Flowers 359 39583 11.11% Roadway-junction 353 32838 13.56%
Kitchen 342 45846 20.11% Demonstration-or-protest 312 50977 10.70%
Office 247 45125 29.28% Indoor-sports-venue 240 44720 31.88%
Science-technology 235 17175 58.83% Running 234 63888 17.19%
Press-conference 232 55943 32.64% Stadium 226 17263 25.64%
Driver 222 51355 17.01% Asian-people 221 49865 5.09%
Old-People 218 50762 9.23% Laboratory 211 45713 2.25%
Government-leader 210 64151 23.32% People-marching 207 53840 4.58%
Military 203 18828 5.97% Bicycles 201 79143 24.08%
Meeting 199 50542 25.59% Maps 186 20245 24.64%
Bridges 178 33741 13.43% Boat-ship 172 68984 26.84%
Airplane 163 65363 19.14% Cats 155 71797 39.94%
Cheering 152 51402 14.83% Military-base 151 34728 11.69%
Dogs 146 71052 28.13% Classroom 139 44777 15.50%
Birds 130 72836 35.18% House-of-worship 130 17600 22.89%
US-Flags 120 17348 16.86% Industrial-setting 117 20138 20.55%
Bicycling 109 94340 0.80% Swimming 109 56342 88.60%
Construction-vehicles 106 78470 2.61% Telephones 103 17419 28.80%
Desert 101 34127 37.56% Eaters 91 51759 20.29%
Scientists 89 62186 12.48% Soccer-player 88 89069 36.55%
Corporate-leader 73 50627 33.60% Police- 70 55430 26.72%
Airplane-flying 66 80785 11.80% Conference-room 62 48330 30.37%
Infants 62 50197 5.14% Shopping-mall 61 33417 14.38%
Tent 54 24003 3.77% Harbors 53 33379 15.42%
Horse 42 73560 7.16% Greeting 39 53883 7.14%
Motorcycle 38 66783 2.27% Bus 31 68980 67.51%
Natural-disaster 31 33558 0.46% Throwing 31 53170 14.61%
Weather 26 17650 0.29% Prisoner 25 58122 20.25%
Hospital 24 50067 0.23% Basketball 19 87731 89.18%
Helicopter-hovering 18 70528 12.47% Truck 17 68010 34.69%
Handshaking 15 55806 0.01% Car-racing 14 101343 6.72%
Golf 13 102673 100.00% Canoe 11 88917 36.81%
Court 8 59518 0.56% Emergency-vehicles 7 79546 100.00%
Cows 6 87266 0.00% Tennis 5 99160 100.00%


