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ABSTRACT

We applied a generative approach to the TRECVID 2010 Se-
mantic Indexing (SIN) and Known-Item Search (KIS) tasks,
using a probabilistic network called Hierarchical Topic Tra-
jectory Model (HTTM). It is our newly-developed model that
can integrate multiple sources of potentially associated infor-
mation such as video frames and texts, as well as dynami-
cally changing high-level pieces of information such as top-
ics. With this model, the semantic indexing and the known-
item search tasks were dealt within a single unified frame-
work. We show how it worked, and present some analysis for
the SIN task.

Index Terms— Semantic indexing, known-item search,
generative approach, topic model, canonical correlation anal-
ysis, hidden Markov model

1. INTRODUCTION

In the field of content analysis, indexing, and retrieval, in re-
cent years, inference techniques have been highlighted for
acquiring topic models. For example, probabilistic latent
semantic analysis (pLSA) [1] and latent Dirichlet alloca-
tion (LDA) [2] are widely used for image annotation and
retrieval [3, 4, 5]. Canonical correlation analysis (CCA)
[6, 7, 8], which is a generalized variant of Fisher linear dis-
criminant analysis (FDA) for multi-category classification, is
also known as one of them. Its effectiveness on image an-
notation and retrieval has been presented in some previous
researches [9, 10, 11]. Furthermore, modeling temporal dy-
namics of videos has been a key for accurate video analysis,
indexing, and retrieval. Typical approaches include: 1) rep-
resenting a video as a set of keyframes to reduce the problem
into “image” annotation and retrieval, and 2) representing a
video as a statistical model [12].

With this background, we developed a new statistical
model called a hierarchical topic trajectory model (HTTM)
that can handle the semantic indexing task and the known-

Image  features Topics Text features

Fig. 1. Topic model representing relationships between image
and text features.

Hidden states

Latent variables

Low-level 

features

Video 

frames

Text 

labels

Fig. 2. Overview of hierarchical topic trajectory model
(HTTM).

item search task within a single framework. The model in-
corporates (1) co-occurrences among visual information and
text information and (2) temporal dynamics of videos simul-
taneously. As shown in Figure 2, it comprises a series of
keyframe-wise topic models and an HMM that connects them.

2. HIERARCHICAL TOPIC TRAJECTORY MODEL

2.1. Framework

This section briefly describes the method we adopted
for Semantic Indexing and Known-Item Search tasks in
TRECVID2010. Details can be seen in [13]. Figure 2
overviews the structure of HTTM, which consists of four lay-
ers: (a) raw data such as video frames and text tags, (b) low-



level features, (c) latent variables and (d) hidden states.
The bottom layer corresponds to video framesvt and text

tagswt. The second layer from the bottom represents low-
level featuresxt andyt extracted from the video frames and
text tags, respectively. The third layer stands for latent vari-
ableszt representing the relationship between video and text
features. The top layer consists of hidden statesst, which
inherits temporal relationships.

HTTM can be formulated by the following joint probabil-
ity density function (PDF):

p(X,Y, Z, S)=
T∏

t=1

p(st|st−1)p(zt|st)p(xt|zt)p(yt|zt),(1)

whereX = {x1, x2, . . . , xT } (Y , Z, S are all defined sim-
ilarly), T is the number of keyframes in a given shot, and
p(s1|s0) = p(s1). We will describe every component PDF in
the following.

The feature vectorsxt andyt at framet are assumed to be
independently generated given a latent variablezt. The PDF
is assumed to be a Gaussian with a mean vector given by an
affine transformation ofzt:

p(xt|zt) = N (xt;W xzt + x,Ψx), (2)

p(yt|zt) = N (yt; W yzt + y,Ψy), (3)

whereN (z; z,Ψ) denotes a Gaussian PDF with meanz and
covariance matrixΨ. A latent space provides a compact rep-
resentation reflecting cross-modal correlations. The PDF of
latent variables given a hidden statest = k can be modeled
by using a Gaussian mixture model (GMM) as described by
the equation below:

p(zt|st =k) =
Lk∑
j=1

πk,jp(zt|st = k, rt,k = j), (4)

p(zt|st =k, rt,k =j) = N (zt; zk,j ,Ψk,j), (5)

whereLk is the number of Gaussians of thek-th GMM, and
zk,j , Ψk,j , πk,j are the mean vector, the covariance matrix
and the mixture weight of thej-th component of thek-th
GMM. simplicity, we assume the number of Gaussians to be
common for all the GMMs, namelyLk = L.

2.2. Model training

In this framework, the parameter estimation method can be
achieved by a combination of canonical correlation analysis
(CCA) and Viterbi learning. It consists of 4 steps as shown in
Fig. 3: (1) extracting low-level features, (2) estimating topic
model parameters with probabilistic CCA [14], (3) extracting
latent variables, (4) estimateing HMM parameters via Viterbi
learning. See [13] for the details.
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Fig. 3. Procedure for param-
eter estimation.
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Fig. 4. Procedure of seman-
tic indexing.

2.3. Semantic indexing and retrieval

Semantic indexing can be considered as a process of label
estimation from video features only. It consists of six steps
as shown in Fig. 4. (1) extracting low-level features from
video frames, (2) obtaining latent variables only from video
features, (3) estimating hidden states by Viterbi decoding,
(4) re-estimating the latent variable considering low-level fea-
tures and hidden states, (5) estimating label features from the
re-estimated latent variables, (6) emitting the indexing result.
For bravity, we will describe only the 4th and 5th steps.

Latent variableŝzt are re-estimated by considering the es-
timated hidden statest obtained in the 3rd step and the low-
level featurext. The PDF of a latent variablezt is given by
the following GMM:

ẑt(xt, st) =
L∑

j=1

π̃j(xt, st)zs(t),j , (6)

π̃j =
πiN (z(xt);zi,ψi)∑L

j=1 πjN (z(xt); zji, ψj)
. (7)

Label featureŝyt can be estimated with the re-estimated latent
variableŝzt with the the framework of PCCA.

ŷt = y(ẑt) = W yẑt + y. (8)

Note that HTTM is symmetric among low-level features,
which implies that we can utilize almost the same approach
also to KIS task.

3. TRECVID2010 SUBMISSIONS

The results obtaind for the semantic indexing task and the
known-item search task are shown in Figs. 5, 6, and 7.

4. ADDITIONAL EXPERIMENTS

4.1. Experimental Conditions

For further analysis of performances of our method in SIN
task, we tested our method with TRECVID 2005 data includ-
ing 127 videos and 56191 shots. We divide them into two sets,
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Fig. 5. Semantic indexing result (K = 40, L = 40)

0.0 0.2 0.4 0.6 0.8 1.0

Inferred recall

0.0

0.2

0.4

0.6

0.8

1.0

In
fe

rr
ed

 p
re

ci
si

o
n

Inferred interpolated     Inferred  precision

   recall precision        at depth n shots

    0.0  0.122              10  0.010

    0.1  0.000             100  0.011

    0.2  0.000            1000  0.012

    0.3  0.000            2000  0.010

    0.4  0.000

    0.5  0.000

    0.6  0.000

    0.7  0.000

    0.8  0.000

    0.9  0.000

    1.0  0.000

            Across 10 test features

    Inferred total true shots:  14987

 Inferred true shots returned:    196

  Mean(inferred average precision): 0.000

Feature number

0.0

0.2

0.4

0.6

0.8

1.0

In
fe

rr
ed

 a
v
er

a
g
e 

p
re

ci
si

o
n

Run score (dot) versus median (---) versus best (box) by feature

4 1
5

1
9

2
8

2
9

4
1

5
9

8
4

1
0
5

1
1
7

Fig. 6. Semantic indexing result (K = 5, L = 50)

one set (containing 102 videos and 45689 shots) is for model
parameter estimation, , the other (containing 25 videos and
10502 shots) is for testing. Bag of Features (BoF) with SIFT
local descriptors provided by vireo374 [15, 16] were used as
image features. We chose 47 text tags1 from LSCOM-Lite
and LSCOM annotation [17, 18] and remove shots without
any of 47 tags. We adopted word occurrence vectors weighted
by idf scores as a text feature.

4.2. Results

Figure 8 shows the performance measured by mean average
precision. We compared HTTM with the framewise topic
model under the constraint that the number of states K=5
and mixtures L=50 were fixed. This figure indicates temporal

1Used labels are: Airplane, AirplaneFlying, Animal, BoatShip,
Building, Bus, Car, Charts, Cityscape, Classroom, ComputerTV-screen,
Corporate-Leader, Court, Crowd, DemonstrationOr Protest, Desert, Enter-
tainment, ExplosionFire, Face, Flag-US, Government-Leader, Hand, Maps,
Meeting, Military, Mountain, Natural-Disaster, Nighttime, Office, Out-
door, People-Marching, Person, PoliceSecurity, Prisoner, Road, Singing,
Sky, Snow, Sports, Studio, Telephones, Truck, Urban, Vegetation, Walk-
ing Running, WaterscapeWaterfront, Weather.
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Fig. 7. Known-item search result (K = 40, L = 40)
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Fig. 8. Recognition results. Proposed model outperforms the
model without state estimation.

transition is effective to enhance the performance.
In the second experiment, we fixed the number of statesK

and mixuresL satisfyingKL = 240 becauseK = 5 andL =
50 performed best in the 1st experiment and 240 has many
divisors around 250. There might be some trade-offs between
the number of hidden states and mixtures. Many hidden states
and a few mixtures would emphasize temporal structures of
videos, while the opposite case would pay attention to the
current frame features more.

Figure 9 shows the results of two labels each. Figure 9
(a) shows that both Airplane and AirplaneFlying performed
best withK = 4, L = 60. This suggests that correlation
information was accurately used in model learning with that
condition. Figure 9 (b) indicates the results of Bus and Mil-
itary. This shows that sometimes HMMs performed worse
than considering only image features. One possible reason is
that GMMs does not match to very small chance levels those
may considered as outliers.

5. CONCLUDING REMARKS

We applied our new approach based on the Hierarchical Topic
Trajectory Model to the SIN and KIS tasks and analyzed some
basic behaviors of the proposed method. Although the current
performance is still limited, we anticipate much future work;
it will include, for example, more detailed discussion regard-
ing the pros and cons when compared with the classifier-based
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Fig. 9. Results of labels: Airplane, AirplaneFlying, Bus and
Military.

methods such as support vector machine (SVM) [19, 20] and
supervised multi-class learning (SML) [21] [22].
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