

CMU-Informedia @ TRECVID 2010 Known-item Search

Lei Bao^{1,2}, Arnold Overwijk¹, Alexander Hauptmann¹

¹School of Computer Science, Carnegie Mellon University ²Institute of Computing Technology, Chinese Academy of Science

Outline

- System overview
- Three retrieval systems
 - Text-based retrieval with Lemur
 - Visual-based retrieval with Bipartite Graph Propagation Model
 - LDA-based multi-modal retrieval
- Multiple query-class dependent fusion
- Conclusions and future work

System overview

0185 Query: Find the video with three black horses eating from a pile of hay with tress and a small red building behind them **0185 Key Visual Cues:** horses, hay, red building

Text-based Retrieval with Lemur

- six query types
 - keywords query
 - keywords filtered by Flickr tags
 - expand keywords by Flickr tags
 - visual cues query
 - visual cues filtered by Flickr tags
 - expand visual cues by Flickr tags
- six fields
 - 3 fields out of 74 in metadata:
 - description
 - title
 - keywords
 - Automatic Speech Recognition(ASR)
 - Microsoft Speech SDK 5.1
 - speech transcription from LIMSI
 - Optical Character Recognition (OCR)
 - all metadata fields, ASR and OCR are combined into 1 field
- fusion: give different weights for fields and query types.

	$\int D$		
M_{f_1}	M_j	f_i	M_{f_n}
		Aorr	n)
(tern	v_i	(tern	
querytį	ipe _u)	` ` ↓ aueru	<u>tune</u> .
1		, ac. 9	·gp · 0
(7	for form for a constraint of the constraint of	bine	

Text-based Retrieval with Lemur

six query types in six fields, tested on 122 sample topics

	all	description	title	keywords	ASR	OCR
keywords	0.2549	0.1787	0.0863	0	0.0636	0.0328
keywords.filtered	0.2911	0.1688	0.0862	0	0.0661	0.0362
keywords.expand	0.0680	0.0024	0.0082	0	0.0021	0
visual cues	0.2640	0.1476	0.0842	0	0.0494	0.0351
visual cues.flitered	0.2785	0.1497	0.0998	0.0027	0.0709	0.0292
visual cues.expand	0.0569	0.0020	0.0171	0.0006	0.0007	0.0007

Visual-based Retrieval with Bipartite Graph Propagation Model

- Explicit concepts
 - pre-defined from human perspective
 - 130 concepts for semantic indexing task
 - 12 color concepts
- Implicit concepts (latent topics)
 - discovered from computer perspective
 - 200 implicit concepts: discovered by Latent Dirichlet Allocation (LDA)

- Bipartite Graph Propagation Model-based Retrieval
 - the relationship between query and explicit and implicit concepts can be described in a bipartite graph
 - after propagation stability, concept nodes with stronger connections with query nodes will win. The score of each concept node indicates its relevance to the queries

Visual-based Retrieval with Bipartite Graph Propagation Model

- Are query examples helpful?
- Are 12 color concepts helpful?
- Are implicit concepts helpful?
- Is the visual-based retrieval helpful?
 - 36 queries out of 420 have over 0.01 performance
 - in these 36 queries, 16 of them have zero performance in text-based retrieval.

	explicit (130)	explicit (130 +12 colors)	implicit (200)	explicit + implicit (342)
query-by-keywords	0.0054	0.0064		
query-by-examples	0.0070	0.0075	0.0047	0.0078
keywords+examples	0.0079	0.0094		0.0099

Visual-based Retrieval with Bipartite Graph Propagation Model

- some reasons for the poor performance
 - concept detectors
 - 304 topics out of 420 contain at least one of the predefined concept
 - only 27 topics out of these 304 have over 0.01 performance
 - shot-based retrieval vs. video-based retrieval
 - 0185: find the video with three black horses eating from a pile of hay with tress and a small red building behind them

Figure 1. keyframes of the answer video for topic 0185.

image examples vs. video examples

LDA-based Multi-modal Retrieval

- A generative topic model to describe the joint distribution of textual and visual features
 - the generative process of a video with N^{t} text words and N^{v} SIFT visual words
 - draw a topic proportion $\theta | \alpha \sim Dir(\alpha)$
 - for each text word w^t
 - choose a topic z ~ multinomial(θ)
 - choose a word w^t from $p(w^t | z, \beta^t)$, a multinomial probability conditioned on the topic z
 - for each visual word w^v
 - choose a topic z ~ multinomial(θ)
 - choose a word w^t from $p(w^v | z, \beta^v)$, a multinomial probability conditioned on the topic z

Multiple Query-class Dependent Fusion

Ranking features

- for each query, its ranking features is a N*K matrix. N is the number of videos in collection. K is the number of experts.
- assumption: assign the queries with similar ranking features into one class helps to optimize weights for the class-dependent fusion.
- Present query based on ranking features
 - train "ranking words" by clustering, where each word is a Kdimensional vector
 - present each query as a bag of "ranking words"
- Cluster queries into several classes
- Optimize fusion weights for each class by exhaustive search

Multiple Query-class Dependent Fusion

- Fuse the results from six fields with keywords query
 - best run out of six
 - single query class dependent fusion
 - 5 query classes dependent fusion

Conclusions & Future Work

- Conclusions
 - textual information contributed the most
 - visual-based retrieval is promising
- Future Work
 - find a better formulation of the query
 - extend the visual-based retrieval from shot-based to videobased
 - re-rank the text-based result with visual feature
 - use multiple query-class dependent fusion to combine the textbased and visual-based retrieval

