CMU-Informedia @ TRECVID 2010
Known-item Search

Lei Bao1,2, Arnold Overwijk1, Alexander Hauptmann1

1School of Computer Science, Carnegie Mellon University
2Institute of Computing Technology, Chinese Academy of Science
Outline

- System overview
- Three retrieval systems
 - Text-based retrieval with Lemur
 - Visual-based retrieval with Bipartite Graph Propagation Model
 - LDA-based multi-modal retrieval
- Multiple query-class dependent fusion
- Conclusions and future work
System overview

0185 Query: Find the video with three black horses eating from a pile of hay with a small red building behind them
0185 Key Visual Cues: horses, hay, red building

Query Reinforcement and Expansion

Text Query
- Keywords
- Visual keywords
- Filter keywords by Flickr API
- Expand keywords by Flickr API

Image Examples from Google Images

Retrieval Systems

Text-based Retrieval with Lemur

Visual-based Retrieval with Bipartite Graph Propagation Model

query-by-keyword query-by-example

LDA-based Multi-modal Retrieval

Multiple Query-Class Dependent Fusion

Final Ranked Video List
Text-based Retrieval with Lemur

- six query types
 - keywords query
 - keywords filtered by Flickr tags
 - expand keywords by Flickr tags
 - visual cues query
 - visual cues filtered by Flickr tags
 - expand visual cues by Flickr tags

- six fields
 - 3 fields out of 74 in metadata:
 - description
 - title
 - keywords
 - Automatic Speech Recognition (ASR)
 - Microsoft Speech SDK 5.1
 - speech transcription from LIMSI
 - Optical Character Recognition (OCR)
 - all metadata fields, ASR and OCR are combined into 1 field

- fusion: give different weights for fields and query types.
Text-based Retrieval with Lemur

- six query types in six fields, tested on 122 sample topics

<table>
<thead>
<tr>
<th></th>
<th>all</th>
<th>description</th>
<th>title</th>
<th>keywords</th>
<th>ASR</th>
<th>OCR</th>
</tr>
</thead>
<tbody>
<tr>
<td>keywords</td>
<td>0.2549</td>
<td>0.1787</td>
<td>0.0863</td>
<td>0</td>
<td>0.0636</td>
<td>0.0328</td>
</tr>
<tr>
<td>keywords.filtered</td>
<td>0.2911</td>
<td>0.1688</td>
<td>0.0862</td>
<td>0</td>
<td>0.0661</td>
<td>0.0362</td>
</tr>
<tr>
<td>keywords.expand</td>
<td>0.0680</td>
<td>0.0024</td>
<td>0.0082</td>
<td>0</td>
<td>0.0021</td>
<td>0</td>
</tr>
<tr>
<td>visual cues</td>
<td>0.2640</td>
<td>0.1476</td>
<td>0.0842</td>
<td>0</td>
<td>0.0494</td>
<td>0.0351</td>
</tr>
<tr>
<td>visual cues.filtered</td>
<td>0.2785</td>
<td>0.1497</td>
<td>0.0998</td>
<td>0.0027</td>
<td>0.0709</td>
<td>0.0292</td>
</tr>
<tr>
<td>visual cues.expand</td>
<td>0.0569</td>
<td>0.0020</td>
<td>0.0171</td>
<td>0.0006</td>
<td>0.0007</td>
<td>0.0007</td>
</tr>
</tbody>
</table>
Visual-based Retrieval with Bipartite Graph Propagation Model

- **Explicit concepts**
 - pre-defined from human perspective
 - 130 concepts for semantic indexing task
 - 12 color concepts

- **Implicit concepts (latent topics)**
 - discovered from computer perspective
 - 200 implicit concepts: discovered by Latent Dirichlet Allocation (LDA)

- **Bipartite Graph Propagation Model-based Retrieval**
 - the relationship between query and explicit and implicit concepts can be described in a bipartite graph
 - after propagation stability, concept nodes with stronger connections with query nodes will win. The score of each concept node indicates its relevance to the queries
Visual-based Retrieval with Bipartite Graph Propagation Model

- Are query examples helpful?
- Are 12 color concepts helpful?
- Are implicit concepts helpful?
- Is the visual-based retrieval helpful?
 - 36 queries out of 420 have over 0.01 performance
 - in these 36 queries, 16 of them have zero performance in text-based retrieval.

<table>
<thead>
<tr>
<th></th>
<th>explicit (130)</th>
<th>explicit (130 +12 colors)</th>
<th>implicit (200)</th>
<th>explicit + implicit (342)</th>
</tr>
</thead>
<tbody>
<tr>
<td>query-by-keywords</td>
<td>0.0054</td>
<td>0.0064</td>
<td>----</td>
<td>----</td>
</tr>
<tr>
<td>query-by-examples</td>
<td>0.0070</td>
<td>0.0075</td>
<td>0.0047</td>
<td>0.0078</td>
</tr>
<tr>
<td>keywords+examples</td>
<td>0.0079</td>
<td>0.0094</td>
<td>----</td>
<td>0.0099</td>
</tr>
</tbody>
</table>
some reasons for the poor performance

- concept detectors
 - 304 topics out of 420 contain at least one of the predefined concept
 - only 27 topics out of these 304 have over 0.01 performance

- shot-based retrieval vs. video-based retrieval
 - 0185: find the video with three black horses eating from a pile of hay with tress and a small red building behind them

Figure 1. keyframes of the answer video for topic 0185.

- image examples vs. video examples
LDA-based Multi-modal Retrieval

- A generative topic model to describe the joint distribution of textual and visual features
 - the generative process of a video with N^t text words and N^v SIFT visual words
 - draw a topic proportion $\theta|\alpha \sim \text{Dir}(\alpha)$
 - for each text word w^t
 - choose a topic $z \sim \text{multinomial}(\theta)$
 - choose a word w^t from $p(w^t|z, \beta^t)$, a multinomial probability conditioned on the topic z
 - for each visual word w^v
 - choose a topic $z \sim \text{multinomial}(\theta)$
 - choose a word w^v from $p(w^v|z, \beta^v)$, a multinomial probability conditioned on the topic z
Multiple Query-class Dependent Fusion

- Ranking features
 - for each query, its ranking features is a $N \times K$ matrix. N is the number of videos in collection. K is the number of experts.
 - assumption: assign the queries with similar ranking features into one class helps to optimize weights for the class-dependent fusion.

- Present query based on ranking features
 - train “ranking words” by clustering, where each word is a K-dimensional vector
 - present each query as a bag of “ranking words”

- Cluster queries into several classes
- Optimize fusion weights for each class by exhaustive search
Multiple Query-class Dependent Fusion

- Fuse the results from six fields with keywords query
 - best run out of six
 - single query class dependent fusion
 - 5 query classes dependent fusion
Conclusions & Future Work

- Conclusions
 - textual information contributed the most
 - visual-based retrieval is promising

- Future Work
 - find a better formulation of the query
 - extend the visual-based retrieval from shot-based to video-based
 - re-rank the text-based result with visual feature
 - use multiple query-class dependent fusion to combine the text-based and visual-based retrieval