

Columbia-UCF MED2010: Combining Multiple Modalities, Contextual Concepts, and Temporal Matching

Yu-Gang Jiang¹, Xiaohong Zeng¹, Guangnan Ye¹, Subh Bhattacharya², Dan Ellis¹, Mubarak Shah², Shih-Fu Chang¹

Department of EE, Columbia University
 Department of EECS, University of Central Florida

The target...

Making a cake

Assembling a shelter

Batting a run in

Overview: 4 major components & 6 runs

Overview: overall performance

Overview: per-event performance

Roadmap > multiple modalities

Three Feature Modalities...

- SIFT (visual)
 - − *D. Lowe, IJCV 04.*

- STIP (visual)
 - *I. Laptev, IJCV 05.*

MFCC (audio)

Bag-of-X Representation

- X = SIFT or STIP or MFCC
- Soft weighting (Jiang, Ngo and Yang, ACM CIVR 2007)

Soft-weighting in Bag-of-X

 Soft weighting is used for all the three Bag-of-X representations

- -- Assign a feature to multiple visual words
- -- weights are determined by feature-to-word similarity

Details in: Jiang, Ngo and Yang, ACM CIVR 2007.

Results on Dry-run Validation Set

Measured by Average Precision (AP)

	Assembling a shelter	Batting a run in	Making a cake	Mean AP
Visual STIP	0.468	0.719	0.476	0.554
Visual SIFT	0.353	0.787	0.396	0.512
Audio MFCC	0.249	0.692	0.270	0.404
STIP+SIFT	0.508	0.796	0.476	0.593
STIP+SIFT+MFCC	<u>0.533</u>	<u>0.873</u>	<u>0.493</u>	<u>0.633</u>

- STIP works best for event detection
- The 3 features are highly complementary!
 - Should be jointly used for multimedia event detection

Roadmap > temporal matching

Temporal Matching With EMD Kernel

Earth Mover's Distance (EMD)

Given two frame sets $P = \{(p_1, w_{p1}), \dots, (p_m, w_{pm})\}$ and $Q = \{(q_1, w_{q1}), \dots, (q_n, w_{qn})\}$, the EMD is computed as $\text{EMD}(P, Q) = \sum_i \sum_j f_{ij} d_{ij} / \sum_i \sum_j f_{ij}$

 d_{ij} is the χ^2 visual feature distance of frames p_i and $q_{j'}$ f_{ij} (weight transferred from p_i and q_j) is optimized by minimizing the overall transportation workload $\Sigma_i \Sigma_i f_{ii} d_{ii}$

• EMD Kernel: $K(P,Q) = \exp^{-\rho EMD(P,Q)}$

Y. Rubner, C. Tomasi, L. J. Guibas, "A metric for distributions with applications to image databases", ICCV, 1998. D. Xu, S.-F. Chang, "Video event recognition using kernel methods with multi-level temporal alignment", PAMI, 2008.

Temporal Matching Results

- EMD is helpful for two events
 - results measured by minimal normalized cost (lower is better)

Roadmap > contextual diffusion

Event Context

- Events generally occur under particular scene settings with certain audio sounds!
 - Understanding contexts may be helpful for event detection

Contextual Concepts

 21 concepts are defined and annotated over MED development set.

Human Action Concepts	Scene Concepts	Audio Concepts
Person walking	Indoor kitchen	Outdoor rural
Person running	Outdoor with grass/trees	Outdoor urban
Person squatting	visible	Indoor quiet
Person standing up	Baseball field	Indoor noisy
 Person making/assembling 	Crowd (a group of 3+	Original audio
stuffs with hands (hands	people)	Dubbed audio
visible)	Cakes (close-up view)	Speech comprehensible
 Person batting baseball 		Music
		Cheering
		Clapping

- SVM classifier for concept detection
 - STIP for action concepts, SIFT for scene concepts, and MFCC for audio concepts

Concept Detection: example result

Contextual Diffusion Model

Semantic Diffusion

[Jiang, Wang, Chang & Ngo, ICCV 2009]

- Semantic graph
 - Nodes are concepts/events
 - Edges represent concept/event correlation
- Graph diffusion
 - Smooth detection scores w.r.t. the correlation

Project page and source code:

http://www.ee.columbia.edu/ln/dvmm/researchProjects/MultimediaIndexing/DASD/dasd.htm

Baseball field

Batting a run in

0.9

0.5

Contextual Diffusion Results

- Context is slightly helpful for two events
 - results measured by minimal normalized cost (lower is better)

Contextual Diffusion Results

- ... but the improvement is much higher when context is perfect (on a validation set)
 - results measured by average precision (higher is better)

Roadmap > reranking with eventspecific object detector

Reranking with Event-Specific Object Detector

"Batter" detector is trained by AdaBoost framework

Reranking with Event-Specific Object Detector

"Batter" detector is trained by AdaBoost framework

Lessons learned

- 1. STIP is powerful for event detection.
- 2. Combining multiple audio-visual features is very effective!
- 3. Temporal Matching with EMD is useful for some events
- 4. Diffusion with Contextual Concepts is promising, and deserves deeper research

Future Work

- 1. Explore deep joint audio-visual representation, e.g., Audio-Visual Atoms [Jiang et al, ACMMM09]
- 2. Another interesting research direction is to investigate an adaptive method to find the best components for each event

THANK YOU!

More information at:

http://www.ee.columbia.edu/dvmm/