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Mean Mimimal Normalized Cost

Overview: overall performance
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Runl: Run2 + “Batter” Reranking

Run2: Run3 + Scene/Audio/Action Context
Run3: Run6 + EMD Temporal Matching
Run4: Run6 + Scene/Audio/Action Context
Run5: Run6 + Scene/Audio Context

Run6: Baseline Classification with 3 features
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Overview: per-event performance

Batting a run in (MNC)
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Making a cake (MNC)
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Assembling a shelter (MNC)

Runl: Run2 + “Batter” Reranking

Run2: Run3 + Scene/Audio/Action Context
Run3: Run6 + EMD Temporal Matching
Run4: Run6 + Scene/Audio/Action Context
Run5: Run6 + Scene/Audio Context

Run6: Baseline Classification with 3 features




Roadmap > multiple modalities
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Three Feature Modalities...

o SIFT (visual)
— D. Lowe, [ICV 04.

e STIP (visual)
— I. Laptev, 1JCV 05.
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Bag-of-x Representation
. X = SIFT or STIP or MFCC

¢ SOft We i g hti n g_ (Jiang, Ngo and Yang, ACM CIVR 2007)

SIFT feature space

Keypoint extraction

Hessian Affine
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BoW histograms Using
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Soft-weighting in Bag-of-X

« Soft weighting is used for all the three
Bag-of-X representations

-- Assign a feature to multiple visual
words

-- weights are determined by
feature-to-word similarity

Details in: Jiang, Ngo and Yang, ACM CIVR 2007.

Image source: http://www.cs.joensuu.fi/pages/franti/vq/lkm15.qif




Results on Dry-run Validation Set

« Measured by Average Precision (AP)

Assemblinga | Battingarun | Makinga @ Mean AP

shelter in cake
Visual STIP 0.468 0.719 0.476 0.554
Visual SIFT 0.353 0.787 0.396 0.512
Audio MFCC 0.249 0.692 0.270 0.404
STIP+SIFT 0.508 0.796 0.476 0.593
STIP+SIFT+MFCC 0.533 0.873 0.493 0.633

« STIP works best for event detection

« The 3 features are highly complementary!
« Should be jointly used for multimedia event detection



Roadmap > temporal matching
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Temporal Matching With EMD Kernel

« Earth Mover’s Distance (EMD)

Given two frame sets P = {(p,, Wpl), cee (pm,wpm)} and Q =
Gy, Wg1)y -1 (@Wg,) ), the EMD is computed as
EMD(P, Q) = 2,2 f,.jd,.j/ 2,2 f,.j

d; is the x° visual feature distance of frames p; and g,. f; (weight
transferred from p; and g;) is optimized by minimizing the overall
transportation workload 2,2, f,d;;

- EMD Kernel: K(P,Q)=expPEMD(~Q)

Y. Rubner, C. Tomasi, L. J. Guibas, “A metric for distributions with applications to image databases”, ICCV, 1998.
D. Xu, S.-F. Chang, “Video event recognition using kernel methods with multi-level temporal alignment”, PAMI, 2008.



Temporal Matching Results

EMD is helpful for two events

— results measured by minimal normalized cost (lower is better)
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Roadmap > contextual diffusion
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Event Context

* Events generally occur under particular scene

settings with certain audio sounds!
— Understanding contexts may be helpful for event detection
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Contextual Concepts

« 21 concepts are defined and annotated over
MED development set.

Human Action Concepts Scene Concepts

= Person walking = Indoor kitchen

= Person running = Qutdoor with grass/trees

= Person squatting visible

= Person standing up = Baseball field

= Person making/assembling = Crowd (a group of 3+
stuffs with hands (hands people)

visible) .
= Person batting baseball

Cakes (close-up view)

Audio Concepts

Outdoor rural

Outdoor urban

Indoor quiet

Indoor noisy

Original audio

Dubbed audio

Speech comprehensible
Music

Cheering

Clapping

+ SVM classifier for concept detection

— STIP for action concepts, SIFT for scene concepts, and MFCC for audio concepts

Jingen Liu, Jiebo Luo & Mubarak Shah, Recognizing Realistic Actions from Videos "in the Wild“, CVPR 2009

Shih-Fu Chang et al. Columbia University/VIREO-CityU/IRIT TRECVID2008 High-Level Feature Extraction and

Interactive Video Search. TRECVID Workshop, 2008




Concept Detection: example result

Baseball field
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Contextual Diffusion Model

Semantic Diffusion Baseball field
[Jiang, Wang, Chang & Ngo, ICCV 2009] 0.9

— Semantic graph
» Nodes are concepts/events

« Edges represent
concept/event correlation

— Graph diffusion

 Smooth detection scores
w.r.t. the correlation

Batting a run in
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Project page and source code:
http://www.ee.columbia.edu/In/dvmm/researchProjects/Multimedialndexing/DASD/dasd.htm
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Contextual Diffusion Results

Context is slightly helpful for two events

— results measured by minimal normalized cost (lower is better)
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Contextual Diffusion Results

... but the improvement is much higher when
context is perfect (on a validation set)

— results measured by average precision (higher is better)

m baseline B context diffusion

Average Precision
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Roadmap > reranking with event-

specific object detector
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Reranking with Event-Specific Object Detector

« “Batter” detector is trained by AdaBoost framework




Reranking with Event-Specific Object Detector

« “Batter” detector is trained by AdaBoost framework

Reranking Based on the Ratio of
detected objects

Initial Ranking “Batter” Detection




Lessons learned

STIP is powerful for event detection.

Combining multiple audio-visual features is very
effective!

Temporal Matching with EMD is useful for some events

Diffusion with Contextual Concepts is promising, and
deserves deeper research

Explore deep joint audio-visual representation, e.qg.,
Audio-Visual Atoms [Jiang et al, ACMMMO09]

Another interesting research direction is to investigate
an adaptive method to find the best components for
each event
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THANK YOU!

More information at:
http://www.ee.columbia.edu/dvmm/
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