Dublin City University (DCU-CLARITY-iAD)

TRECVID 2010 Interactive Search

Colum Foley, Jinlin Guo, David Scott, Paul Ferguson, Pete Wilkins, Kealan M Cusker, Emma Sesmero Diaz, Cathal Gurrin, Alan F. Smeaton

November 2010
– Our submission in summary
 • Simple, intuitive iPad interface
 • Supports the 3 common modes of interaction
 – Text search
 – Concept search
 – Image search
 • Evaluated the performance of novices versus experts
 – 18 users in total
 – Novice users were business management students from BI School of Management in Oslo
 • Official results show no difference in performance between user groups
DCU 2010 Interactive KIS System Overview
Webservice Overview

– Constructed using .NET web service as underlying technology

– Communication with iPad through HTTP POST
 – Text and Concept Search
 – Image Similarity Search
 – Shot timing request
 – Validity checking for known-item
Webservice Overview II

- Returned results in the form of XML Document:
 - Top 100 videos for text & concept search
 - Top 50 similar keyframes for similarity search

- Logging
 - Keeping a record of all interactions with the system
 - NIST record for each topic
Text Search

- Terrier search engine used as underlying text search engine (University of Glasgow)
- Three indexes created:
 - Original Metadata (title, description, keywords)
 - Automatic Speech Recognition
 - Phonetic Translation
- Both phonetic and ASR indexes over shot level, needed to be aggregated to video level
– Weighted CombSUM was used to fuse three text sources with weights set by experiments over training topics
 • Meta(6), ASR(2), Phonetic(1)
– Text and concepts are fused by using concepts in a boosting technique over an original text list
Semantic Concept Detection
– We evaluated two SVM classification frameworks for concept detection in our system.

Concept detection based on MPEG-7 descriptors and SURF

Concept detection based on Bag of Words (BoW) model
Low-level Feature Extraction

- MPEG-7 Colour and Texture Descriptors:
 - Colour Layout
 - Scalable Colour
 - Edge Histogram

- Local Interest Point Descriptors:
 SURF is a scale- and rotation-invariant spatial descriptor based on Haar wavelet responses and has been proven effective in detecting objects.

Concept Detection Based on MPEG-7 Descriptors and SURF

SURF feature Extraction
In recent years the Bag-of-Visual-Word (BoW) model produced good results on several large-scale content based image and video retrieval benchmarks.

Low-Level Feature:
- Scale-invariant feature transform (SIFT)
- Visual vocabulary constructed using K-means clustering with a vocabulary of 1296 visual words

Visual vocabulary transformation technique:
- Soft assignment is employed
- For each SIFT point the top-100 nearest visual words selected and weights assigned based on distance
Implementation Details

– Radial Basis Function (RBF) kernel is adopted for both classification frameworks
 • Better classification results than polynomial or linear kernels

- In the final system we developed 33 concepts based on types of concepts used in the training topics

 Animal, beach, beard, Black and White video, boat/ship, building, bus, car, charts, cityscape, computers, computer screen, crowd, daytime outdoor, face, flower, ground vehicle, indoor, indoor sports, landscape, map, meeting, military, nighttime, office, outdoor, person, road, sky, snow, stadium, tree, vegetarian
– Used by the user to find similar keyframes to a query image (from search results)
– Based on the MPEG-7 Colour and Texture Descriptors:
 - Colour Layout
 - Scalable Colour
 - Edge Histogram
– For each keyframe in the collection we calculated the similarity to each other keyframe for each feature
– Multiple features are combined using CombSUM
iPad User Interface

...Video
TV Results: Mean Elapsed Time

Mean Elapsed Time (mins)

I_A_YES_I2R_INTERACTIVE_KIS_2_1
I_A_YES_I2R_INTERACTIVE_KIS_1_2
I_D_YES_LMS-NUS_VisionGo_1
I_A_YES_LMS-NUS_VisionGo_4
I_A_YES_MM-Hannibal_1
I_A_YES_DCU-CLARITY-iAD_run1_1
I_A_YES_DCU-CLARITY-iAD_novice1_1
I_A_YES_PicSOM_4_4
I_A_YES_PicSOM_3_3
I_A_YES_ITI-CERTH_1
I_A_YES_MM-Murdock_3
I_A_YES_ITI-CERTH_2
I_A_NO_ITI-CERTH_2
I_A_NO_ITI-CERTH_3
I_A_NO_ITI-CERTH_4
TV Results: User Satisfaction

User Satisfaction

- I_A_YES_I2R.INTERACTIVE_KIS_1_2
- I_D.YES_LMS-NUS_VisionGo_1
- I_A.YES_PicSOM_3_3
- I_A.YES.ITI-CERTH_2
- I_A.YES.I2R.INTERACTIVE_KIS_2_1
- I_A.YES_LMS-NUS_VisionGo_4
- I_A.YES_DCU-CLARITY-iAD.run1_1
- I_A.YES_DCU-CLARITY-iAD.novice1_1
- I_A.YES_PicSOM_4_4
- I_A.YES_ITI-CERTH_1
- I_A.NO_ITI-CERTH_4
- I_A.NO_ITI-CERTH_3
- I_A.YES.MM-Murdock_3
- I_A.YES.MM-Hannibal_1
Post-Experiment Analysis

– Examined the interaction logs and questionnaires
– Wanted to examine both the performance of novice versus experts in more detail
 • Overall search performance
 • Different search strategies used
– Also wanted to compare performance of three text indexes
Overall Search Performance

Mean Elapsed Time

Overall
- Novice
- Expert

Successful
- Novice
- Expert
Rank of Known-item in ranked lists returned

Average Rank of Known-Item

Overall

Successful

Unsuccessful

Novice

Expert

0 100 200 300 400 500 600 700
Number of Queries Per Search Task

Number of Queries

Overall
- Novice: 5
- Expert: 4

Successful
- Novice: 4
- Expert: 3

Unsuccessful
- Novice: 6
- Expert: 5
Search Techniques

- Text Only
- Concepts Only
- Text + Concepts
- Image Similarity

Bar chart comparing Novice and Expert performance for different search techniques.
Questionnaires 1 – Overall System Questions

Overall System Questions

- Overall Performance
- Navigate Results
- Search Efficiently
- Responsiveness
- Ease of use
- Satisfaction
- Easy to Learn

0 1 2 3 4 5 6 7
Questionnaire – Different Search Techniques

How Helpful?

Text
Concept
Similarity
Text Search Performance

Average Rank of Known-Item

- Meta
- ASR
- Phonetic

0 100 200 300 400 500 600 700 800 900
Conclusions

– Developed a simple, intuitive iPad app as a front-end to a video search engine
– Official runs show novices and experts performed the same
– Post-experiment analysis of our extended runs shows experts performed better overall in terms of mean elapsed time
 – However average rank of known-item was better for novices
Conclusions II

– Experts used fewer queries than novices
– Text search most popular querying technique
 • Text & Concepts most popular for experts
 • Text alone most popular for novices
 • Content based techniques used more by experts
– Novice users found our system easy to use and easy to learn how to use
Thank You!

– Questions?