

IBM Research & Columbia University Multimedia Event Detection System

Speaker: Paul Natsev <natsev@us.ibm.com>

IBM T. J. Watson Research Center

On Behalf Of:

IBM Research: Matthew Hill, Gang Hua, John R. Smith, Lexing Xie

IBM Interns: Bert Huang, Michele Merler, Hua Ouyang, Mingyuan Zhou

Columbia Univ.: Shih-Fu Chang, Dan Ellis, Yu-Gang Jiang

TRECVID-2010 Workshop Gaithersburg, MD Nov. 15-17, 2010

Multimedia Event Detection (MED) Task Overview

- Judge Y/N for each target event given a YouTube-style video
- Challenging dataset
 - 1700+ diverse videos
 - A few shots vs
 long and varied
 - Only 50 examples/event

Category	#Videos	#Keyframes
Assembling shelter	48	2,123
Making cake	48	3,119
Batting in run	50	347
Random	1,577	49,247

Key Questions

- Do cross-domain concept classifiers help for complex event detection?
- Answer: YES! Our best performing feature...
- How do static features/models compare to dynamic ones?
- Answer: Surprisingly similarly...
- Can we move beyond bag-of-X representations to sequence-of-X?
- Answer: Exploratory temporal motif features show promise, 2nd best feature...

Static and Dynamic Features

Static Features:

- Break down video into keyframes
- Extract 98 global image features
- GIST features
- Dense SIFT descriptors (BOW, 1K codebook)
- Semantic model vectors (272 semantic concept classifiers)

Dynamic features

- Transcode videos to 5 frames per second
- Extract Space-Time Interest Points [Laptev et al.]
- Build dynamic visual words from HOG and HOF descriptors (BOW, 1K codebook, 1x2 temporal pyramid)
- Temporal motifs (co-occurring sequences or bags of features)
- Probabilistic motifs (Hierarchical HMM-based)

Breakdown of features and event modeling approaches

Features	Static features	Dynamic features
Event Models		
Frame-level models	98 Global features	_
	GIST	
	SIFT BoW	
	Semantic Model Vector	
Video-level models	Semantic Model Vector	STIP HOF + Temporal Pyramid
	SIFT BoW (Columbia*)	Temporal motifs
		Probabilistic motifs (HMM-based)
		STIP HOG + HOF (Columbia*)
		Audio BoW (Columbia*)

^{*} For details on Columbia features/runs, see Columbia notebook paper and presentation

Single Best Performing Feature – Semantic Model Vector

Other Notable Features

Bag-of-visual words

- IBM: dense SIFT, 1000-D visual word codebook, soft assignment
- Columbia: SIFT with DoG and Hessian detectors, 500-d codebooks, spatial pyramid (frame + 4 quadrants), 5000-D total feature length

Bag-of-audio-words

Columbia: MFCCs for every 32ms, 4000-d audio word codebook

Spatio-Temporal Interest Points (STIP) [Laptev et al.]

- Histogram of Gradients (HOG) and Histogram of Flow (HOF)
- IBM: 1000-D codebook + temporal pyramid, HOF only
- Columbia: 4000-D codebook, concatenated HOG+HOF

Temporal motifs

- Mine sequential frequent item-sets from training data
- Use the presence/absence of item-sets as features

Probabilistic motifs

- Learn a group of HMMs on feature partitions
- Use the state histogram of HMMs as features

Results – Normalized Detection Cost (NDC) Per Event

Results – Aggregated NDC Over All Events

Results – Mean Average Precision Over All Events

Run	Mean AP (submitted)	Mean AP (*with bug fix)
Global	0.10	0.29*
GIST	0.08	0.23*
SIFT BoW	0.08	0.24*
Semantic Model Vector	0.32	0.32
Combo Static Features	0.39	0.44*
HoF	0.11	0.11
HoF Temporal Pyramid	0.13	0.13
Temporal Motifs	0.30	0.30
Probabilistic Motifs	0.26	0.26
Combo Dynamic Features	0.47	0.47
Combo IBM Runs	0.34	0.49*
Columbia Audio BoW	0.37	0.37
Columbia STIP BoW	0.45	0.45
Columbia SIFT BoW	0.47	0.47
Combo IBM + CU Runs	0.49	0.54*

Per-Event Observations

Assembling shelter & making cake events

- Not clear they are very temporal in nature
- Static features perform on par with, or better than, dynamic features
- Semantic model vectors outperform everything else
- Fusion runs dramatically improve upon all constituent runs (over 2x better)

Batting-in event

- Most homogeneous event, highest performance of the 3 events
- Sequence features (motifs) outperform other dynamic features
- Fusion runs modestly improve upon all constituent runs (over 25% better)
- Fusion with Columbia runs brings an extra 10% improvement → 0.54 MAP

Summary

- Semantic Model Vector is our single best-performing feature
 - The cross-domain semantic concept classifiers are very useful
- New temporal motif representation (sequence-of-X) shows promise
 - Our second-best feature overall
- Dynamic and static features perform comparably, surprisingly...
 - Not all complex events are truly dynamic in nature
 - Still, fusion of dynamic and static features performs best (2x gains)
- Columbia features/runs bring in complementary info (e.g., audio)
 - Lead to overall MAP of 0.54 with only 50 training examples per event
- Comments for the task
 - If no localization required, AP and NDC give similar rankings
 - So can we use the simpler AP metric? How is cost profile motivated?

Acknowledgments: The Team (in alphabetical order)

IBM Research

- Matthew Hill
- Gang Hua
- Paul Natsev
- John R. Smith
- Lexing Xie

Summer Interns @ IBM

- Bert Huang, Columbia U.
- Michele Merler, Columbia U.
- Hua Ouyang, Georgia Tech
- Mingyuan Zhou, Duke U.

Columbia University

Shih-Fu Chang, Dan Ellis, Yu-Gang Jiang