INRIA LEAR-TEXMEX: Copy detection task

Introduction

- INRIA participation in 2008: top results on all transformations
 - focus on accuracy + localization
- Video:
 - same system as in 2008:
 An image-based approach to video copy detection with spatio-temporal filtering
 Douze, Jégou & Schmid, IEEE Trans. Multimedia 2010
 - + parameter's optimization
- Audio: new system (no audio in 2008's evaluation)
 - audio descriptors computed with standard package (spro)
 - novel approximate nearest neighbor search method
- In this talk:
 - brief overview of our video and audio systems
 - focus on our ANN method
 - comments on our results

Short overview of our video system: key components

- Local descriptors: CS-LBP
 - Heikkila et al., PR'2010

- ANN search: Hamming Embedding
 - Jégou et al., ECCV'08

Score regularization:

$$s_i = s_i imes \left(\frac{s_i}{\max_j s_j}\right)^c$$

- Weak geometric consistency
 - Jégou et al., ECCV'08

- Burstiness strategy + Multi-probe
 - Jégou et al., ICCV'09

- Spatio-temporal fine post-verification
 - Douze et al., IEEE TMM'10

Short overview of our audio system: key components

- Descriptors
 - filter banks
 - Compounding
 - energy invariance
 - ▶ 1 vector /10 ms

- online package: https://gforge.inria.fr/projects/spro, filter banks, MFCC, etc
- Novel ANN search based on compression paradigm: see next slides
- Temporal integration: Hough voting scheme (votes in histogram Δt=tb-tq)

Video parameter optimization

OBJECTIVE: improve precision with "reasonable" cost w.r.t. efficiency

- Decreasing detector threshold
 - number of descriptors
 - complexity 7
 - precision 7 (with HE)
 - threshold: T200 or T100
- Describe flip/half-sized frames
 - on database side only
 - threshold: H200 or H100

•	Multiple assignment	(=mul	ti-prob	e)
---	---------------------	-------	---------	----

on query side only

mAP on a validation dataset

query	database		
	T200	T200 +H200	T200 +H100
T200	0.483		
T100	0.514	0.568	0.583
T100+flip	0.627	0.719	0.738
T100+flip, MA10	0.683	0.749	0.737
T100+flip, MA3	0.650	0.755	0.761

Observation:

- half sized and flipped frame help a lot
- small multi-probe (x3) is sufficient

Note: generic system

only flipped is specifically to

Huge volumes to index: approximate nearest neighbor search

index size (database)					
Video, T200	d=128	2.48 billion descriptors			
Video (half, H100)	d=128	0.97 billion descriptors			
Audio	d=144	140 million descriptors			

- → Need for powerful approximate search
- Locality Sensitive Hashing: memory consuming, need for post-verification on disk, not very good trade-off between precision/efficiency
- FLANN: excellent results, memory consuming, need for post-verification (on disk given the dataset size)
- We used:
 - Video: Hamming Embedding with 48 bits signature (10B/descriptors+geometry)
 - Audio: Compression based approach -> Product quantization method

Indexing algorithm: searching with quantization [Jegou et al., TPAMI'11]

Purpose: approximate NN search with limited memory (and no disk access)

- Search/Indexing = distance approximation problem
- The distance between a query vector *x* and a database vector *y* is estimated by

$$d(x,y) \approx d(x,q(y))$$

where q(.) is a fine quantizer

→ vector-to-code distance

- Distance is approximated in compressed domain
 - typically 8 table look-ups and additions per distance estimation (for SIFTs)
 - proved statistical upper bound on distance approximation error

Indexing algorithm: searching with quantization [Jegou et al., TPAMI'11]

- Combination with inverted file: coarse quantizer to avoid scanning all elements
- Here: MA=3

- Efficient search: searching in 2 billion SIFT vectors (with MA=1)
 - ► This method: 3.4 ms / query vector
 - ► HE: 2.8 ms / query vector

Comparison with FLANN [Muja & Lowe'09]

Tested on 1 million SIFTs

- 1.5 to 2 faster than FLANN for same accuracy
- Memory usage for 1M vectors (according to "top" command):
 - ► FLANN: > 250MB
 - Ours: < 25MB</p>

NDCR: Comparison between 2008 and 2010

2010

Ranks / 22 participants (BAL, Opt_NDCR)					
Rank	1st	2nd	3rd	4th	5th
#	6	10	19	18	2

Huh?! What's the problem?

"Bug": a few false positive videos are returned frequently with very high scores NRIA

Results on Trecvid: sub-optimality of our approach

- Problem with audio: pseudo-white segments → corrupts similarity measure
- Fusion based on invalid assumptions:
 - two first runs: audio and video assumed to have similar performance
 - two last runs: audio assumed to be better than video

Conclusion

- We have learned many things this year:
 - actual decision threshold: need for « cross-databases » setting method
 - audio helps a lot (when working)
 - fusion module is very important
 - audio ≠ video, room for improvement by score normalization
 - strong bonus when both agree
- What's might interest the other participants in what we have done
 - approximate nearest neighbor method for billion vectors
- Online resources:
 - spro: library for audio descriptors
 - Matlab toy implementation of our compression based search method
 - BIGANN: a billion sized vector set to evaluate ANN methods
 - GIST descriptor in C: OK for several copy transformations [Douze et al., CIVR'09, IBM Trecvid'10]

