Baseline Approach for Instance Search Task:
Local Region-based Face Matching and Regional Combination of Local Features

Duy-Dinh Le, Sebastien Poullot, and Shin’ichi Satoh
National Institute of Informatics, JAPAN
Task Overview

- “Given a collection of queries that delimit a person, object, or place entity in some example video, locate for each query the 1000 shots most likely to contain a recognizable instance of the entity.” (cf. TRECVID guideline).

- Examples for one query
 - ~5 frame images.
 - mask of an inner region of interest.
 - the inner region against a grey background.
 - the frame image with the inner region region outlined in red.
 - a list of vertices for the inner region region the target type: PERSON, CHARACTER, LOCATION, OBJECT.
Challenges – PERSON (1/2)

- Large variations in poses, sizes, facial expressions, illuminations, aging, complex background, etc.
- Examples
Challenges – OBJECT (2/2)

- Large variations in orientations, sizes, deformations, etc.

Examples

Query - 9013 - OBJECT - IKEA logo on clothing

Query - 9021 - OBJECT - tank
Baseline Approach – Overview (1/2)

- **System 1:**
 - Different treatments for different query types: PERSON, CHARACTER vs OBJECT, LOCATION.
 - Face representation: local region-based feature.
 - Frame representation: SIN task features \rightarrow global + local features.
Baseline Approach – Overview (2/2)

- **System 2:**
 - General treatment for all queries.
 - Focus on the mask of query examples.
 - Region representation: **CCD task features**: regional combination of local features.

![Diagram showing the workflow of System 2](image)
Feature Representation – System 1 (1/2)

- **Face feature**
 - Frontal faces are detected by NII’s face detector (similar to Viola-Jones face detector).
 - Pixel intensity inside 15x15 circular regions corresponding to 13 facial points (9 facial feature points are detected, 4 more facial feature points \(^{(1)}\) are inferred from these 9 points) \(13 \times 149 = 1,937\) dimensions. (using code provided by VGG – Oxford, UK) \(^{(2)}\).
 - Local binary patterns feature extracted from 5x5 grid, 30 bins \(5 \times 5 \times 30 = 750\) dimensions.

\(^{(1)}\) the centers of the eyes, a point between the eyes, and the center of the mouth.
\(^{(2)}\) http://www.robots.ox.ac.uk/~vgg/research/nface/
Global feature – SIN task

- Color moments: 5x5 grid, HSV space \(\times 5 \times 5 \times 3 \times 3 = 225 \) dimensions.
- Local binary patterns: 5x5 grid, 30 bins \(\times 5 \times 5 \times 30 = 750 \) dimensions.

Local feature

- 10 predefined regions.
- BoW of SIFT descriptors extracted from keypoints detected by HARHES keypoint detector.
- 738 words x 10 regions = 7,380 dims.
Retrieval Strategy – System 1

- For PERSON queries, extract frontal faces and face descriptors.
- Extract frame descriptors for all query examples and keyframes in the reference database (50 keyframes/shot).
- Compute similarity between query examples and keyframes using the face descriptors and the frame descriptors. The similarities are:
 - L1, L2 for the face descriptors and the global features.
 - HIK for the local feature.
 - No indexing technique is used to boost the speed.
- Compute the similarity score for one query and one shot
 - Pick the minimum score among pairs between query examples and the keyframes of the input shot.
- Fusion the scores of face descriptors and frame descriptors
 - Normalize scores using sigmoid function.
 - Linear combination of weighted scores
 - Very high weight for the face descriptor: \(w_{\text{face}} = 300 \). → Focus on FACE.
 - Low weight for the frame descriptors: \(w_{\text{frame}_i} = 1 \).
Feature Representation – System 2

- **Query**
 - Focus on mask of query examples.
 - Extract Sift(DoG) features and synthesis Glocal features on a 2048 words vocabulary.
 - Take normalized RGB histogram of the area.
 - 2 descriptors for each query example.

- **Reference database**
 - Extract low rate KF (0.4 per second).
 - Extract Sift(DoG) features and synthesis Glocal features on a 2048 words vocabulary.
 - Take normalized RGB histogram of the area.
 - 2 descriptors for each keyframe.
Retrieval Strategy – System 2

- Compute similarity between query example descriptors and keyframe ones. The similarities are:
 - Dice coefficient for Glocal.
 - L1 for RGB histograms.
- Simply added together for 1 query example.
- All similarity scores of the query examples are added for each keyframe.
L1 is the most suitable choice for similarity measure.

Good face feature brings good result.

Results – System 1 (2/2)

- Performance for PERSON(8) and CHARACTER(5) queries — 13 queries.
- Performance for OBJECT(8) and LOCATION(1) queries — 9 queries.
Some Results – System 1

- System-1: **Fusion** helps to improve the performance
- Only face descriptor: 8 - 15 - 18 - 20
- Fusion: 7 - 11 - 17 - 19
Some Results – System 1

- **Color moments feature** → good performance for PERSON queries

Query - 9012 - PERSON - Midas Dekkers.

Query - 9009 - CHARACTER - Two old ladies, Ta en To. List.

Rank 1, and 10
Some Results – System 1

- Local feature \(\rightarrow\) **HIK might not be suitable** similarity measure since it is easy to bias in favor of images with complex texture.
Some Results – System 2

Query: 9022 - OBJECT - Willem Wever van.

Willem(query22) rank 240
Glocal only

Willem(query22) rank 48
Glocal only
Some Results – System 2

Query - 9012 - PERSON - Midas Dekkers.

Query12
Glocal+RBG
Rank 14
Rank 62
Rank 92
Some Results – System 2

Query - 9007 - CHARACTER - The Cook (Alberdinck)

Query 9007
Glocal+RGB
Rank 86
Rank 123
Discussions

- For PERSON and CHARACTER queries, the (max) performance is usually high.
- Current face matching technique only handles frontal faces. More efforts should be made to handle multi-view faces.
Discussions - 1

- Fusion of different features for different object types helps to improve the performance. However, how to efficiently fuse is questionable. Our approach is quite ad-hoc.
- Appropriate similarity measure should be carefully selected.
- Dense sampling in keyframe extraction is an important factor.
Discussions - 2

- Bad quality of queries is damageable for local feature.
- Color moments feature is simple, but can achieve reasonable result. In some cases, it outperforms local features.
- How to deal with scale and comparison to images from reference database.
Demo – 1

- Username/password: trecvid/niitrec.
- Functions: view query examples, ground truth, and ranked lists of runs.
Demo - 2

Result page

Irrelevant

Relevant
Thank you and Question