TRECVID 2010 Known-item Search by NUS

<u>Xiangyu Chen</u>, Jin Yuan , Liqiang Nie, Zhengjun Zha, Shuicheng Yan Tat-Seng Chua

National University of Singapore, Singapore

Outline

- Introduction
- Auto Search
- Interactive Search
- Ul of Our System & Demo
- Conclusion & Future Work

Known-Item Search Task

- Given a text-only description of the video desired (Ground Truth Only One)
 - ➤ Automatically return a list of up to 100 video IDs ranked by probability. (5 minutes)
 - ➤ Interactively return the ID of the sought video and elapsed time to find it. (5 minutes)

0022 QUERY: Find the video of a man and woman getting dressed, a cat on window sill and another cat joining it, a wedding, two kittens and two babies

Motivations

- > Efficient web service oriented video interactive search
 - Efficient user interface (UI) for good interaction and efficient visualization
 - New feedback algorithm based on both related samples and exclusive negative samples;
 - Clustered shot-icons for fast previewing the main content of the videos.

VisionGo System

User Interface

- Maximize user's annotation effort
- Video-Show: rich visual and audio content
- Clustering based Shot-Icons: Top-rank Icon + Expand Icon

Auto Search

- Multi-modality features fusion: Metadata, ASR, HLF and Youtube data
- Query Analysis

Interactive Search

- Related samples strategy
- Exclusive negative sample selection
- Fusion of two kinds of HLF

Efficient User Interface

Maximize user's annotation effort

- Video-Show: show the detail and special visual and audio content
- Clustered Shot-Icons:

Top-rank Icon + Expand Icon : represent the visual

content of whole video

Efficient User Interface

- UI for good interaction and efficient visualization
- Maximize user's annotation effort

Feedback

Area

Auto Search

Multi-modality features fusion

- Metadata is the most effective textual feature
- ASR plays a complementary role
- Tags of the crawled Youtube dataset

Query Analysis

- Query expansion by Youtube
- Morphological analysis between description of HLFs and KIS's queries

Overview of Auto Search

Query Analysis

- Query expansion by Youtube (two steps)
 - (a) Use the query to retrieve relevant video from Youtube and collect the tags/comments
 - (b) Extract terms from this collection (high mutual info.)
- Morphological analysis
 - HLF is necessary to query in terms of visual requirement
 - Utilize WordNet to do selective expansion
 - Match between feature descriptions of HLFs and KIS's queries

Auto Search Performance

Runs	Mean inverted rank	Mean elapsed time (mins)	Mean user satisfaction
Run1 (Metadata+ Youtube)	0.215	0.021	6.0
Run2 (Metadata+HLF)	0.217	0.021	6.0

- ➤ Additional Tags data set is crawled from the Youtube website
- > This dataset consists of 8,383 subsets of Youtube tags
- > Each subset is downloaded corresponding to the title of each video
 - Tags in Youtube are diverse as the words in metadata
 - Need further denoise and extract key words in this dataset

Interactive Search

Related Sample Strategy

Exclusive Negative Samples Selection

Fusion of Two Kinds of HLF

Related Sample Strategy

- Related Sample based Feedback
 - Related sample refer to those video segments that are irrelevant to the query but relevant to some of the related concepts of the query. (Yuan el. CIVR10)
 - New feedback strategy based on related shots of different videos

Shot query detector

$$f^{t}(x) = \eta \left(\sum_{k=1}^{K} d_{k}^{t} f_{k}(x) + \frac{1}{t-1} \sum_{l=1}^{t-1} \beta_{l}^{t} \Delta f^{l}(x) + \Delta f^{t}(x) \right)$$

Related Concept
Detectors

Previous Delta Detector

Current Delta Detector

Learn Video Detector by Fusion

$$F^{t}(v_{j}) = \frac{1}{N_{v_{j}}} \sum_{p=1}^{N_{v_{j}}} f^{t}(s_{p})$$

Related Sample Strategy

Exclusive Negative Samples Selection

Exclusive Concept Subsets

```
G1={airplane, infants, basketball, dancing, ..., hospital, maps, laboratory } G2={telephones, birds, chair, basketball, ..., flowers, golf, infants, maps} G3={laboratory, mountain, basketball, maps, ..., singing, kitchen, driver} ......
Gn-1={golf, hospital, highway, infants, ..., laboratory, prisoner, stadium} Gn={boat_ship, cows, court, dancing, ..., computer_or_televison_screen}
```

➤ If the selected related samples contain the concepts: "birds", "mountain", "highway", then the exclusive negative set for the query is

$$G_e = (G_2 \cup G_3 \cup G_{n-1}) \setminus \{\text{"birds", "mountain", "highway"}\}$$

Construction for exclusive concept sets:

Robust Graph Mode Seeking by Graph Shift (Liu H. and Yan S. ICML'10)

Fusion of Two Kinds of HLF

Linear Fusion Detector Scores (130 concepts):

```
Multi-lable Propagation (Chen el. MM 2010) + CU-VIREO374 (Y.-G. Jiang el . 2008 )
```

Visual features:

225-D blockwise color moments

128-D wavelet texture

75-D edge direction histogram

> Advantages:

- Computation cost: about 32 hours
- Learned concept scores are robust to noises

Interactive Search Performance

Runs	Mean inverted rank	Mean elapsed time (mins)	Mean user satisfaction
Run1 (Metadata+HLF)	0.628	2.799	5.75
Run2 (Youtube+HLF)	0.628	2.577	6.0

- > Top 2 performance in all interactive search participants
- ➤ Validate proposed feedback scheme based on both related samples and exclusive negative samples

Interactive Search Performance

Demo of VisionGo

Interactive QUERYs:

- Find the video of a man and women getting dressed, a cat on window sill and another cat joining it, a wedding, two kittens and two babies
- Find the video of one girl in a pink T shirt and another in a blue T shirt doing an Easter skit with swirling lights in the background
- Find the video of 21 seconds of your time featuring orange, Japanese lanterns in the night
- Find the video of the cost of drugs, featuring a man in glasses at a kitchen table, a video of Bush, and a sign saying Canada
- Find the video of President Bush standing near sea vessels with Coast Guard members talking about his pride of the Coast Guard, immigration, and security issues.
- Find the video of a street that has a pedestrian crosswalk indicated with blue stripes. People are walking on the sidewalk and cars are driving on the street

Conclusions & Future Work

Contributions in this work

- Efficient UI in interactive video search
- Proposed feedback method based on both related samples and exclusive negative samples
- Clustered shot icons for fast previewing main content of the videos

Future work

- Extend the proposed novel feedback to real condition web services
- Develop more intuitive UI to enhance the user experience

Thank you!

