# Content-Based Video Copy Detection: PRISMA at TRECVID 2010

Juan Manuel Barrios and Benjamin Bustos

PRISMA Research Group
Department of Computer Science
University of Chile
{jbarrios,bebustos}@dcc.uchile.cl

November 17, 2010

## PRISMA System Overview

- Copy Detection System developed for TRECVID 2010.
- Three Global descriptors.
- No Audio information.
- Pivot-based index with approximate search.
- Voting algorithm for copy localization.
- Implemented in C with OpenCV library.
- System divided in five tasks/steps.

#### PRISMA System Overview



#### • Preprocessing:

- Skip irrelevant frames.
- Remove black borders.
- Inverse transformations for Camcording, PIP and Flip.

Query videos increased from 1,608 to 5,378.

Reference videos kept in 11,524.



#### 2 Frame Sampling:

- Divides each video in groups of similar consecutive frames (GF).
- Uniform subsampling of 3 frames per second.
- Similarity between frames defined as maximum difference between intensity of pixels.

Query Videos are divided into 1,000,000 groups.

Reference Videos are divided into 4,000,000 groups.

#### 2 Frame Sampling:

- Divides each video in groups of similar consecutive frames (GF).
- Uniform subsampling of 3 frames per second.
- Similarity between frames defined as maximum difference between intensity of pixels.

Query Videos are divided into 1,000,000 groups.

Reference Videos are divided into 4,000,000 groups.



#### **6** Feature Extraction:

- Descriptor of a group is the average of descriptors for each frame.
- Extracts three global visual descriptors :
  - EH: Edge Histogram  $(4 \times 4 \times 10 = 160 \text{ dimensions})$
  - GH: Gray Histogram  $(3 \times 3 \times 20 = 180 \text{ dimensions})$
  - CH: RGB Histogram (2 × 2 × 48 = 192 dimensions) (1 byte per dimension)



#### Similarity Search:

- Compares descriptors from query groups with descriptors from reference groups.
- $DIST(G_i, G_j)$  is a distance function that measures the similarity between groups  $G_i$  and  $G_j$ .
- DIST is defined as a combination of two descriptors:
  - Run ehdNgryhst: DIST combines EH and GH.
  - Run ehdNclrhst: DIST combines EH and CH.

• Distance between groups is a static weighted combination of distance between descriptors  $(\gamma)$ :

$$\delta(G_i, G_j) = w_1 \times \gamma_1(G_i, G_j) + w_2 \times \gamma_2(G_i, G_j)$$

• We defined  $\gamma$  as  $L_1$  (Manhattan) distance for EHD, GH and CH vectors:

$$L_1(x,y) = \sum_{i=0}^{d} |x_i - y_i|$$

• Final distance between groups is the average of  $\delta$  between three consecutive groups:

$$DIST(G_i, G_j) = \frac{\delta(G_{i-1}, G_{j-1}) + \delta(G_i, G_j) + \delta(G_{i+1}, G_{j+1})}{3}$$

• DIST requires more than 1,000 operations to be evaluated.

• We set weights for each descriptor using a histogram of distances between pairs of vectors.



- Weights normalize to 100 the distance that covers 0.01% of pairs on each histogram:  $\frac{100}{1469} = 0.068$   $\frac{100}{1106} = 0.090$   $\frac{100}{660} = 0.152$
- ehdNgryhst:  $\delta = 0.068 \times EH + 0.090 \times GH$
- ehdNclrhst:  $\delta = 0.068 \times \mathrm{EH} + 0.152 \times \mathrm{CH}$

- The intrinsic dimensionality  $\frac{\mu^2}{2\sigma^2}$  quantifies how hard is to search on a metric space [Chávez et al, 2001].
- Move  $w_2$  to a value that locally maximizes intrinsic dimensionality of  $\delta$ .
- Iterative algorithm that converged to:
  - ehdNgryhst:  $\delta = 0.068 \times EH + 0.090 \times GH$
  - ehdNclrhst:  $\delta = 0.068 \times \mathrm{EH} + 0.045 \times \mathrm{CH}$



• The output of the Similarity Search task is a Nearest-Neighbors Table with most similar reference groups for each query group.

| Query                                                                         | NN 1                                                                                                           | NN 2                                                        |                                              | NN 3                                                                                   |                                              |
|-------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|----------------------------------------------|----------------------------------------------------------------------------------------|----------------------------------------------|
| Query1Group1 Query1Group2 Query1Group3 Query1Group4 Query1Group5 Query1Group6 | Vid07_Grp54 di:<br>Vid09_Grp13 di:<br>Vid07_Grp14 di:<br>Vid09_Grp15 di:<br>Vid01_Grp88 di:<br>Vid09_Grp54 di: | Vid08_Grp73 Vid02_Grp34 Vid03_Grp54 Vid02_Grp13 Vid01_Grp12 | dist<br>dist<br>dist<br>dist<br>dist<br>dist | Vid01_Grp68<br>Vid02_Grp33<br>Vid09_Grp14<br>Vid03_Grp65<br>Vid07_Grp58<br>Vid07_Grp59 | dist<br>dist<br>dist<br>dist<br>dist<br>dist |
| Query1Group7<br>Query1Group8                                                  | Vid01_Grp45 dis<br>Vid09_Grp19 dis                                                                             |                                                             | dist<br>dist                                 | Vid03_Grp20<br>Vid07_Grp61<br>                                                         | dist<br>dist                                 |

• A naive approach would evaluate  $1,000,000 \times 4,000,000$  times DIST (this takes about 11 month!).

- DIST complies with metric properties: Reflexivity, Non-Negativity, Symmetry, and Triangle Inequality.
- Let q be a group of frames from a query video, and v be a group of frames from a reference video.
- A lower bound for DIST(q, v) can be calculated with pivots:



- DIST complies with metric properties: Reflexivity, Non-Negativity, Symmetry, and Triangle Inequality.
- Let q be a group of frames from a query video, and v be a group of frames from a reference video.
- A lower bound for DIST(q, v) can be calculated with pivots:



• Lower Bound:  $DIST(q, v) \ge |DIST(p, q) - DIST(p, v)|$ 

- DIST complies with metric properties: Reflexivity, Non-Negativity, Symmetry, and Triangle Inequality.
- Let q be a group of frames from a query video, and v be a group of frames from a reference video.
- A lower bound for DIST(q, v) can be calculated with pivots:



• Let  $S = \{p_1, ..., p_m\}$  be a set of pivots, then:  $DIST(q, v) \ge \max_{p \in S} \{|DIST(p, q) - DIST(p, v)|\}$ 

- Index creation:
  - The system selects 4 sets of 9 pivots with the incremental SSS algorithm [Bustos et al, 2008].
    - Each set requires a table with  $9 \times 4,000,000$  distances.
  - The system compares the 4 sets and selects the set that has the greatest average lower bound and discards the others [Zezula et al, 2005].



- Index creation:
  - The system selects 4 sets of 9 pivots with the incremental SSS algorithm [Bustos et al, 2008].
    - Each set requires a table with  $9 \times 4,000,000$  distances.
  - The system compares the 4 sets and selects the set that has the greatest average lower bound and discards the others [Zezula et al, 2005].



- Similarity search for a query group q:
  - For every pivot p evaluate DIST(q, p).
  - For every reference group v calculate a lower bound for DIST(q, v)• Only 9 operations to calculate each lower bound.
  - Select 4,000 objects (0.1%) with lowest lower bounds.
  - Calculate actual DIST(q, v) just for the 4,000 objects and select the NNs between them.



- Similarity search for a query group q:
  - For every pivot p evaluate DIST(q, p).
  - For every reference group v calculate a lower bound for DIST(q, v)• Only 9 operations to calculate each lower bound.
  - Select 4,000 objects (0.1%) with lowest lower bounds.
  - Calculate actual DIST(q, v) just for the 4,000 objects and select the NNs between them.



- Similarity search for a query group q:
  - For every pivot p evaluate DIST(q, p).
  - For every reference group v calculate a lower bound for DIST(q,v)• Only 9 operations to calculate each lower bound.
  - Select 4,000 objects (0.1%) with lowest lower bounds.
  - Calculate actual DIST(q, v) just for the 4,000 objects and select the NNs between them.



- Similarity search for a query group q:
  - For every pivot p evaluate DIST(q, p).
  - For every reference group v calculate a lower bound for DIST(q, v)• Only 9 operations to calculate each lower bound.
  - Select 4,000 objects (0.1%) with lowest lower bounds.
  - Calculate actual DIST(q, v) just for the 4,000 objects and select the NNs between them.



- Similarity search for a query group q:
  - For every pivot p evaluate DIST(q, p).
  - For every reference group v calculate a lower bound for DIST(q,v)• Only 9 operations to calculate each lower bound.
  - Select 4,000 objects (0.1%) with lowest lower bounds.
  - Calculate actual DIST(q, v) just for the 4,000 objects and select the NNs between them.



- Similarity search for a query group q:
  - For every pivot p evaluate DIST(q, p).
  - For every reference group v calculate a lower bound for DIST(q, v)• Only 9 operations to calculate each lower bound.
  - Select 4,000 objects (0.1%) with lowest lower bounds.
  - Calculate actual DIST(q, v) just for the 4,000 objects and select the NNs between them.



#### Opy Localization:

- Takes NNs table and searches for chains of groups belonging to a same reference video with temporal coherence.
- Voting algorithm based on NN rank, NN distance and spread of votes in chain.
- Copy localization set as start/end of chain.

| Query                                        | NN 1               |            | NN 2                                      |                      | NN 3                                      |                      |
|----------------------------------------------|--------------------|------------|-------------------------------------------|----------------------|-------------------------------------------|----------------------|
| Query1Group1 Query1Group2                    | Vid09_Grp13 di     | st<br>st   | Vid08_Grp73<br>Vid02_Grp34<br>Vid03 Grp54 | dist<br>dist<br>dist | Vid01_Grp68<br>Vid02_Grp33                | dist<br>dist<br>dist |
| Query1Group3<br>Query1Group4<br>Query1Group5 | Vid09_Grp15 di     | .st<br>.st | Vid03_Grp54<br>Vid02_Grp13<br>Vid01_Grp12 | dist<br>dist<br>dist | Vid09_Grp14<br>Vid03_Grp65<br>Vid07_Grp58 | dist<br>dist         |
| Query1Group6<br>Query1Group7                 | Vid01_Grp45 di     | st<br>st   | Vid09_Grp17<br>Vid03_Grp43                | dist<br>dist         | Vid07_Grp59<br>Vid03_Grp20                | dist<br>dist         |
| Query1Group8                                 | Vid09_Grp19 di<br> | st         | Vid01_Grp12<br>                           | dist                 | Vid07_Grp61<br>                           | dist                 |

#### Opp Localization:

- Takes NNs table and searches for chains of groups belonging to a same reference video with temporal coherence.
- Voting algorithm based on NN rank, NN distance and spread of votes in chain.
- Copy localization set as start/end of chain.

| Query                                                                                                                        | NN 1                                                                                                                 |                                                              | NN 2                                                                                                                 |                                                              | NN 3                                                                                                                 |                                                              |
|------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|
| Query1Group1<br>Query1Group2<br>Query1Group3<br>Query1Group4<br>Query1Group5<br>Query1Group6<br>Query1Group7<br>Query1Group8 | Vid07_Grp54<br>Vid09_Grp13<br>Vid07_Grp34<br>Vid09_Grp15<br>Vid01_Grp88<br>Vid09_Grp54<br>Vid01_Grp45<br>Vid09_Grp19 | dist<br>dist<br>dist<br>dist<br>dist<br>dist<br>dist<br>dist | Vid08_Grp73<br>Vid02_Grp34<br>Vid03_Grp54<br>Vid02_Grp13<br>Vid01_Grp12<br>Vid09_Grp17<br>Vid03_Grp43<br>Vid01_Grp12 | dist<br>dist<br>dist<br>dist<br>dist<br>dist<br>dist<br>dist | Vid01_Grp68<br>Vid02_Grp33<br>Vid09_Grp14<br>Vid03_Grp65<br>Vid07_Grp58<br>Vid07_Grp59<br>Vid03_Grp20<br>Vid07_Grp61 | dist<br>dist<br>dist<br>dist<br>dist<br>dist<br>dist<br>dist |
|                                                                                                                              |                                                                                                                      |                                                              |                                                                                                                      |                                                              |                                                                                                                      |                                                              |
|                                                                                                                              |                                                                                                                      |                                                              |                                                                                                                      |                                                              | <b>—</b>                                                                                                             | <u>,</u>                                                     |

score Vid07= 2.2

#### Opp Localization:

- Takes NNs table and searches for chains of groups belonging to a same reference video with temporal coherence.
- Voting algorithm based on NN rank, NN distance and spread of votes in chain.
- Copy localization set as start/end of chain.



#### Results

# **RESULTS**

#### Results

- Submitted Runs:
  - balanced.ehdNgryhst:  $\delta = 0.068 \times EH + 0.090 \times GH$
  - balanced.ehdNclrhst:  $\delta = 0.068 \times EH + 0.045 \times CH$
  - nofa.ehdNgryhst: equal to balanced.ehdNgryhst with stricter voting algorithm.
  - nofa.ehdNghT10: equal to nofa.ehdNgryhst but with a different threshold.
- Analysis focused on Optimal NDCR.
- EH+GH slightly better than EH+CH.
- Better results in NOFA profile than in Balanced profile.

- Optimal NDCR:
  - Lower NDCR than median for each transformation.
  - Better results for Insertion of Pattern and Strong Reencoding.



- Optimal NDCR:
  - Lower NDCR than median for each transformation.
  - Better results for Insertion of Pattern and Strong Reencoding.



- Optimal F1:
  - Good localization for PIP and bad localization for Camcording and Change in gamma.



- Mean Time:
  - Slightly higher than the median, specially for camcording and PIP.



#### Comparison

- Comparison with Optimal NDCR averaged between all transformations.
- 22 teams, 41 submitted runs for balanced profile and 37 for nofa profile.

| Run                 | Avg Opt NDCR | global rank              | video-only rank  |
|---------------------|--------------|--------------------------|------------------|
| balanced.ehdNgryhst | 0.597        | $14^{th} \text{ of } 41$ | $1^{st}$ of $15$ |
| balanced.ehdNclrhst | 0.658        | $16^{th} 	ext{ of } 41$  | $3^{rd}$ of $15$ |
| nofa.ehdNgryhst     | 0.611        | $10^{th} \text{ of } 37$ | $1^{st}$ of $14$ |
| nofa.ehdNghT10      | 0.611        | $11^{th} \text{ of } 37$ | $2^{nd}$ of $14$ |

| Run                 | Avg Opt F1 | global rank              | video-only rank  |
|---------------------|------------|--------------------------|------------------|
| balanced.ehdNgryhst | 0.820      | $15^{th} \text{ of } 41$ | $2^{nd}$ of 15   |
| balanced.ehdNclrhst | 0.820      | $16^{th}$ of 41          | $3^{rd}$ of $15$ |
| nofa.ehdNgryhst     | 0.828      | $14^{th}$ of 37          | $1^{st}$ of $14$ |
| nofa.ehdNghT10      | 0.828      | $15^{th} 	ext{ of } 37$  | $2^{nd}$ of $14$ |

## Comparison



## Comparison



#### Conclusions

- Acceptable overall results:
  - Global descriptors can achieve competitive results with TRECVID transformations.
  - Pivot-based approximation enables to discard 99.9% of distance computations and still have good effectiveness.
- Two novel techniques:
  - Set weights maximizing intrinsic dimensionality.
  - Calculate actual distance just for 0.1% lowest lower bounds.
- Future work:
  - Improve the efficiency of preprocessing task.
  - Test other distances for descriptors instead of  $L_1$  (in particular some non-metric similarity measure).
  - Test the inclusion of audio information and local descriptors.

# Thank you!



| н (i) | (:) | (:) | (1) (1) | (:) | (:) | (:) | (:) | (1) | (:) | (:) | (:) |
|-------|-----|-----|---------|-----|-----|-----|-----|-----|-----|-----|-----|
|       |     |     |         |     |     |     |     |     |     |     |     |
|       |     |     |         |     |     |     |     |     |     |     |     |



Juan Manuel Barrios and Benjamin Bustos



PRISMA Research Group
Department of Computer Science
University of Chile
{jbarrios,bebustos}@dcc.uchile.cl

November 17, 2010



| score Vid09= 3.7 | score Vid07= 2.2 |
|------------------|------------------|

Thank you!