Telefonica Research Multimodal Video copy detection

Xavier Anguera, Tomasz Adamek and Fhsan Younessian*

Who we are?

- Telefónica Research is the innovation company of the Telefónica Group
- Telefónica Research is the largest private R&D centre in Spain

- Telefónica is one of the world's largest telecommunications companies by market cap
 - operates in 25 countries
 - customer base 277.8 million

Multimodal Video Copy detection

Video-based block diagram

DART* local features (advantages)

- Superior to SIFT or SURF
 - good repeatability of key-points
 - precision vs. recall
- Attractive for the video copy detection task:
 - very low computational cost
 - 6x faster that SIFT and 3x faster than SURF
 - compact descriptor
 - only 68 components

^{*} D. Marimon, A. Bonnin, T. Adamek, and R. Gimeno, "DARTs: Efficient scale-space extraction of daisy key-points", CVPR 2009.

DART: key-point selection

 Efficient computation of the scale-space using piecewise triangle filters*

Information reused for key-points orientation assignment and description computation

^{*} P. Heckbert, "Filtering by repeated integration" SIGGRAPH 1986

DART: key-point description

- DAISY*-like descriptor
- Layout:
 - 2 rings, each with 8 segments
- Each segment represented by four values:
 - $\{|\partial x| \partial x; |\partial x| + \partial x; |\partial y| \partial y; |\partial y| + \partial y\}$
 - $(1 + 2x8) \times 4 = 68$ components
- Segments overlap
- Re-grouping near samples into a single sample

^{*} S. Winder, G. Hua, and M. Brown, "Picking the best daisy", CVPR 2009.

Inserted static text and banner detection

- Sliding a temporal window of 15 key-frames
- Detection of pixels with zero standard deviation intensity
- Morphological filtering used to fill out holes
- Designed for longer videos with multiple shots
 - Problematic with short videos with static scenes

Subtitles detection

- Detecting spatial regions with high density of vertical edges
- Vertical edges computed using Sobel operator
- Edge density computed within a sliding window
- Morphological filtering filling out holes between letters

Key-point scale & temporal filtering (1/2)

Key-point number limits:

– Queries: 1200 KPs

– Reference: 400 KPs

- Not all key-points are equally useful:
 - Key-points extracted at higher scales are given more importance
 - Favoring temporarily stable key-points
 - Key-point trail length

Key-point scale & temporal filtering (2/2)

Ref. key-frame indexing

Query key-frame matching

Matching keyframes temporal consistency

Step 1: insert all matches into a histogram based on relative times and select the 20 biggest matches

Matching keyframes temporal consistency

Step 2: compute an output score as the density of matches along a 10s window

Foreach matching video (out of 20):

Audio-based system blocks diagram

Acoustic fingerprint extraction*

^{*}T. Kalker and J. Haitsma. A highly robust audio finger- printing system. In *Proceedings of ISMIR'2002*, pages 144–148, 2002.

Acoustic fingerprint extraction

1) Audio track extraction using FFMPEG

2) FFT, bandwidth limited to 300-3KHz

17 MEL-spectrum bands

Acoustic fingerprint extraction

1) Audio track extraction using FFMPEG

2) FFT, bandwidth limited to 300-3KHz

3) Contiguous bands energy comparison

16bits

17 MEL-spectrum bands

Acoustic matching algorithm

Step 1: insert all matches into a histogram based on relative times and select the biggest For every relative time a different node is created if:

- No previous reference video was found at that relative time OR
- Time difference between two matches is small (less than 5s)

Acoustic matching algorithm

Acoustic matching algorithm

Fusion system general blocks*

X. Olivares, M. Ciaramita, and R. van Zwol, "Boosting image retrieval through aggregating search results based on visual annotations," in Proc. ACM MM, 2008.

Fusion steps

Matching score L1 normalization

$$\overline{MScore_i} = \frac{MScore_i}{\displaystyle\sum_{j=1}^{20} MScore_j}$$

Fusion steps

- We consider segments with overlap > 50% between both modalities
- Combination of ranking and matching scores

$$FScore_{i} = \frac{\sum_{k} \frac{21 - rank_{i}^{k}}{20} \cdot \overline{MScore_{i}^{k}}}{\sum_{k} \overline{MScore_{i}^{k}}}$$

$$\frac{4422 \text{ queries with same audio & video best match With only 2,3% FA}}{\text{Fusion scores histogram}}$$

Fusion examples

Official evaluation results

Actual scores (averaged over all transformations), balanced profile

	NDCR	FA count	Miss count	True positives	F1 score
Audio only	43.95	407.57	30.86	90.14	0.93
Video only	4.83	41.63	19	81.63	0.93
Fusion	1.2	8.84	7.77	97.20	0.91
Position	8	10	4	8	3

Out of 134 copies per transformation

Only case where the fusion did not work better

Take home messages from the results

- Fusion is always helping to detect copies
- We got many false alarms in both video and audio, mostly due to lack of tuning
 - In general, audio fingerprints need some extra work.
- F1 is very good for videos we do detect
- Processing time... we better not report on that

Analysis of errors in audio: misses

- Music getting very distorted within the 300-3KHz bands.
 - Original signal

Band-limited to 300-3KHz

- Very short audio segments (sometimes with silences)
- Strong audio overlap + reencodings

Analysis of errors in video

REFERENCE

QUERY

OUR RESULT

- False alarms:
 - Wrong shot boundaries
 - static shots
 - semi-static shots
 - Wrongly matched dark blue text

- Misses:
 - Horizontal flip
 - Very small Picture in Picture
 - Heavy compression
 - Very dark and/or empty scenes

Conclusions and future work

- Fusion of multiple modalities greatly improves copy detection
 - Need to be smarter when fusing segment boundaries
- DART features are suitable for the task
- Audio fingerprints need some extra work to make them robust to IACC data
- In general, we need to reduce false alarms