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The Informedia group participated in three tasks this year, including Multimedia Event Detection (MED), 
Semantic Indexing (SIN) and Surveillance Event Detection (SED). The first half of the report describes 
our efforts on MED and SIN, while the second part discusses our approaches to SED.  

For Multimedia Event Detection and Semantic Indexing of concepts, generally, both of these tasks consist 
of three main steps: extracting features, training detectors and fusion. In the feature extraction part, we 
extracted many low-level features, high-level features and text features. Specifically, we used the Spatial-
Pyramid Matching technique to represent the low-level visual local features, such as SIFT and MoSIFT, 
which describe the location information of feature points. In the detector training part, besides the 
traditional SVM, we proposed a Sequential Boosting SVM classifier to deal with the large-scale 
unbalanced data classification problem. In the fusion part, to take the advantage of different features, we 
tried three different fusion methods: early fusion, late fusion and double fusion. Double fusion is a 
combination of early fusion and late fusion. The experimental results demonstrated that double fusion is 
consistently better than or at worst comparable to early fusion and late fusion. 
 
The Surveillance Event Detection report in the second half of this paper presents a generic event detection 
system evaluated in the SED task of TRECVID 2011. We investigated a generic statistical approach with 
spatio-temporal features applied to seven events, which were defined by the SED task. This approach is 
based on local spatio-temporal descriptors, called MoSIFT, and generated from pair-wise video frames. 
Visual vocabularies are generated by cluster centers of MoSIFT features, which were sampled from the 
video clips. We also estimated the spatial distribution of actions by over-generated person detection and 
background subtraction. Different sliding window sizes and steps were adopted for different events based 
on the event duration priors. Several sets of one-against-all action classifiers were trained using cascade 
non-linear SVMs and Random Forests, which improved the classification performance on unbalanced 
data just like the SED datasets. Results of 9 runs were presented with variations in i) sliding window size 
ii) step size of BOW, iii) classifier threshold and iv) classifiers. The performance shows improvement 
over last year on the event detection task. 
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Abstract

We report on our results in the TRECVID 2011 Multimedia Event Detection
(MED) and Semantic Indexing (SIN) tasks. Generally, both of these tasks con-
sist of three main steps: extracting features, training detectors and fusing. In the
feature extraction part, we extracted many low-level features, high-level features
and text features. We used the Spatial-Pyramid Matching technique to represent
the low-level visual local features, such as SIFT and MoSIFT, which describe the
location information of feature points. In the detector training part, besides the
traditional SVM, we proposed a Sequential Boosting SVM classifier to deal with
the large-scale unbalanced classification problem. In the fusion part, to take the
advantages from different features, we tried three different fusion methods: early
fusion, late fusion and double fusion. Double fusion is a combination of early
fusion and late fusion. The experimental results demonstrated that double fusion
is consistently better than or at least comparable to early fusion and late fusion.

1 Multimedia Event Detection (MED)

1.1 Feature Extraction

In order to encompass all aspects of a video, we extracted a wide variety of visual and audio features
as shown in figure 1.

Table 1: Features used for the MED task.
Visual Features Audio Features

Low-level Features

• SIFT [19]
• Color SIFT [19]
• Transformed Color Histogram [19]
• Motion SIFT [3]
• STIP [9]

Mel-Frequency Cepstral Coefficients

High-level Features
• PittPatt Face Detection [12]
• Semantic Indexing Concepts [15] Acoustic Scene Analysis

Text Features Optical Character Recognition Automatic Speech Recognition



1.1.1 SIFT, Color SIFT (CSIFT), Transformed Color Histogram (TCH)

These three features describe the gradient and color information of a static image. We used the
Harris-Laplace detector for corner detection. For more details, please see [19]. Instead of extracting
features from all frames for all videos, we first run shot-break detection and only extract features
from the keyframe of a corresponding shot. The shot-break detection algorithm detects large color
histogram differences between adjacent frames and a shot-boundary is detected when the histogram
difference is larger than a threshold. For the 16507 training videos, we extracted 572,881 keyframes.
For the 32061 testing videos, we extracted 1,035,412 keyframes.

Once we have the keyframes, we extract the three features as in [19]. Given the raw feature files, a
4096 word codebook is acquired using the K-Means clustering algorithm. According to the code-
book and given a region in an image, we can create a 4096 dimensional vector representing that
region. Using the Spatial-Pyramid Matching [10] technique, we extract 8 regions from an keyframe
image and calculate a bag-of-words vector for each region. At the end, we get a 8× 4096 = 32768
dimensional bag-of-words vector. The 8 regions are calculated as follows.

• The whole image as one region.

• Split the image into 4 quadrants and each quadrant is a region.

• Split the image horizontally into 3 equally sized rectangles and each rectangle is a region.

Since we only have feature vectors describing a keyframe, and a video is described by many
keyframes, we compute a vector representing a whole video by averaging over the feature vectors
from each keyframe. The features are then provided to a classifier for classification.

1.1.2 Motion SIFT (MoSIFT)

Motion SIFT [3] is a motion-based feature that combines information from SIFT and optical flow.
The algorithm first extract SIFT points, and for each SIFT point, it checks whether there is a large
enough optical flow near the point. If the optical flow value is larger than a threshold, a 256 dimen-
sional feature is computed for that point. The first 128 dimensions of the feature vector is the SIFT
descriptor, and the latter 128 dimensions describes the optical flow near the point. We extracted
Motion SIFT by calculating the optical flow between neighboring frames, but due to speed issues,
we only extract Motion SIFT for the every third frame. Once we have the raw features, a 4096 di-
mensional codebook is computed, and using the same process as SIFT, a 32768 dimensional vector
is created for classification.

1.1.3 Space-Time Interest Points (STIP)

Space-Time Interest Points are computed like in [9]. Given the raw features, a 4096 dimensional
code is computed, and using the same process as SIFT, a 32768 dimensional vector is created for
classification.

1.1.4 Semantic Indexing (SIN)

We predicted the 346 semantic concepts from Semantic Indexing 11 onto the MED keyframes. For
details on how we created the models for the 346 concepts, please refer to section 2. Once we have
the prediction scores of each concept on each keyframe, we compute a 346 dimensional feature
that represents a video. The value of each dimension is the mean value of the concept prediction
scores on all keyframes in a given video. We tried out different kinds of score merging techniques,
including mean and max, and mean had the best performance. These features are then provided to a
classifier for classification.

1.1.5 Face

We ran face detection over all videos using the PittPatt Face Detection software [12], and extracted
information on the location of the face, the size of the face and whether the face is frontal or pro-
file. In order to speed up the process, we sample 10 frames per second from each video and only
perform face detection on the sampled frames. From the extracted face information, we create a 9
dimensional vector where the meaning of each dimension is as follows.

1. Number of faces in the video divided by the total number of frames



2. Maximum number of faces in a frame in the whole video.
3. Number of frames with more than (including) one face divided by the total number of

frames.
4. Number of frames with more than (including) two faces divided by the total number of

frames.
5. Number of frontal faces divided by the total number of faces.
6. The median of the ratio face width

frame width for all faces in the video.

7. The median of the ratio face height
frame height for all faces in the video.

8. Number of frames in the center of the frame divided by total number of faces. If w and h
is the width and height of the video respectively, and let (x, y) be the location of the center
of a face, then the face is in the center of the frame if w

4 ≤ x ≤ 3×w
4 and h

4 ≤ y ≤ 3×h
4 .

9. Median of the confidences of all faces in the video.

We did not perform face tracking or face identification.

1.1.6 Optical Character Recognition (OCR)

We used the Informedia system [5] to extract the OCR. We extracted OCR at a sample rate of 10
frames per second. For details of the OCR process, please refer to [11]. Once we have the OCR
output, we create TF-IDF [13] bag-of-words features for each video. Since OCR rarely gets a word
completely correct, the vocabulary we use here is a trigram of characters. For example the word
”rarely” will be split into ”rar”, ”are”, ”rel” and ”ely”. In this way, if one of the characters was miss
recognized, there are still some trigrams that are correct.

1.1.7 Automatic Speech Recognition (ASR)

We run automatic speech recognition using the Janus [17] and the Microsoft ASR system. Once
completed, for each video, we combine the output of each system into one file and view it as a
document. We then perform stemming using the Porter Stemmer, and calculate the TF-IDF [13]
bag-of-words vectors for each video.

1.1.8 Mel-Frequency Cepstral Coefficients (MFCC)

We extracted Mel-frequency cepstral coefficients (MFCC) features using the Janus system. Given
the raw features, we treat the raw features as a computer vision feature (e.g. SIFT) and run the
MFCC features through the same computer vision pipeline. Therefore, we compute a 4096 word
codebook and aggregate all MFCC features in one video to create a 4096 dimensional bag-of-words
vector. Spatial Pyramid Matching is not reasonable here, so it is not applied.

1.1.9 Acoustic Scene Analysis (ASA)

An expert manually annotated about 3 hours (≈ 120 files) of videos with 42 semantic concepts,
which can be derived from the audio: a small ontology links the annotated ”small engine” sound
concept to video concepts, and the words mentioned in the event kits. Using these labels, we trained
42 Gaussian Mixture Models, which we connected as an ergodic Hidden Markov Model, used to
decode the test data with Viterbi. The symbol sequence generated by this step is treated as a bag-of-
word, and fed into an SVM classifier.

1.1.10 Performance of features

Table 2 and 3 show the performances of the above features when we use non-linear support vector
machine as classifier. The mean minNDC score on 10 Events is used to measure their performances.
The smaller mean minNDC score means the better performance. From Table 2, we can find that:

• Generally, comparing low-level visual features, high-level visual features and text visual
features, low-level visual features work best.
• Comparing three kinds of image-based low-level features: SIFT, CSIFT and TCH, SIFT

describes the gradient information, TCH describes the color information and CSIFT de-
scribes both gradient and color information. The performance of TCH is much worse than



SIFT. It means the gradient information is more discriminant than color information in
MED task and also explains why the performance of CSIFT is slightly worse than SIFT.

• Comparing two kinds of motion-based feature: MoSIFT and STIP. MoSIFT works around
8% better than STIP, which indicates MoSIFT is a better motion-based feature for MED
task.

• Comparing high-level based feature SIN with low-level features, the performance of SIN
is comparable to CSIFT and MoSIFT features, better than TCH and STIP, and around 6%
worse than SIFT. Generally, with only SIN feature, the system also can get a reasonable
performance.

Table 2: The performances of visual features

features SIFT CSIFT TCH MoSIFT STIP SIN Face OCR
mean MinNDC 0.689 0.717 0.778 0.724 0.782 0.730 0.985 0.90

From Table 3, we can find that:

• Generally, audio features work worse than visual based features. However, these two kind
of features are very complementary. When we just simply combined audio and visual fea-
tures by average late fusion, the mean minNDC can be improved around 12%. It decreased
from 0.600 to 0.528.

• Comparing low-level audio feature(MFCC), high-level audio feature (ASA) and text fea-
ture (ASR), low-level audio feature works best.

• Comparing high-level audio feature ASA with high-level visual feature SIN, ASA is much
worse than SIN. It is only slightly better than random. The reason could be that we only
have 42 audio concepts and there are not enough to describe the 10 events, however, the
SIN provides 346 visual concepts which are reasonable large enough to describe the 10
events.

Table 3: The performances of audio features

features MFCC ASA ASR
mean MinNDC 0.805 0.981 0.897

1.2 Classifier Training and Fusion

A large variety of classifiers exist for mapping the feature space into score space. In our final sub-
mission, three classifiers are adopted, i.e. non-linear support vector machine (SVM) [2] and kernel
regression (KR), and Sequential Boosting SVM in Section 2.2. SVM is one of the most commonly
used classifier due to its simple implementation, low computational cost, relatively mature theory
and high performance. In TRECVID MED 2010, most of the teams [8] [7] use SVM as their classi-
fiers. Compared to SVM, KR is a simpler but less used algorithm. However, our experiment shows
that the performance of KR is consistently better than the performance of SVM.

For combining features from multiple modalities and the outputs of different classifiers, we use three
fusion methods, which are early fusion, late fusion and double fusion.

Early Fusion [4] is a combination scheme that runs before classification. Both feature fusion and
kernel space fusion are example of early fusion. The main advantage of early fusion is that only one
learning phase is required. Two early fusion strategies, i.e., rule-based combination and multiple
kernel learning [16], have been tried to combine kernels from different features. For rule-based
combination, we use the average of the kernel matrix. Multiple kernel learning [16] is a natural
extension of average combination. It aims to automatically learn the weights for different kernel
matrix. However,our experimental results show that the performance of multiple kernel learning
is only slightly better than average combination. Considering that average combination is much
less time consuming than multiple kernel learning, average combination is used as our early fusion
method for final submission.



In contrast to early fusion, late fusion [4] happens after classification. While late fusion is easier to
perform, in general, it needs more computational effort and has potential to lose the correlation in
mixed feature space. Normally, another learning procedure is needed to combine these outputs, but
in general, because of the overfitting problem, simply averaging the output scores together yields
better or at least comparable results than training another classifier for fusion. Compared to early
fusion, late fusion is more robust to features that have negative influence. In our final submission, we
use both average combination and logistic regression to combine the outputs of different classifiers.

In our system, we also use a fusion method called double fusion, which combines early fusion and
late fusion together. Specifically, for early fusion, we fuse multiple subsets of single features by
using standard early fusion technologies; for late fusion, we combine output of classifiers trained
from single and combined features. By using this scheme, we can freely combine different early
fusion and late fusion techniques, and get benefits of both. Our results show that double fusion is
consistently better, or at least comparable than early fusion and late fusion.

Table 4: Comparison of classifiers, and Fusion Methods, MinNDC is used as evaluation criteria.

Classifier Early Fusion Late Fusion Double Fusion
SVM 0.632 0.528 0.519

Sequential Boosting SVM 0.651 0.556 0.554
KR 0.585 0.516 0.506

1.3 Submissions

A submission for a MED 2011 event consists of a video list with scores and a threshold. The score
for each video is computed by a classifier that is trained on a number of features in Section 1.1.
We experimented with three different types of classifiers: SVM, Sequential Boosting and Kernel
Regression in Section 1.2. For each classifier we explored early fusion, late fusion and a technique
that we call double fusion in Section 1.2. Given the scores for each video per event, we have two
methods to compute the actual threshold. The first method is a simple cutoff at 1800. This number
guarantees us that the false alarm rate will be lower than 6%, because we return less than 6% of all
videos. Moreover the number of videos that our system did not detect will be as low as possible
within the 6% false alarm criteria. Notice that this method is very conservative and will likely not
be close to the best possible threshold. The second method is to use the best threshold of our cross
validation experiments in the training data. This method is obviously less conservative and turned
out to be very unstable in weighted fusion techniques, but as we will see later it performs well for
average fusion techniques.

1.3.1 Primary run

Since the primary run is the most important, we prefer it to be our best run, however we don’t
want to risk the chance that we are over-fitting on the training data and therefore the results have
to be stable across different splits in our training data. Moreover the actual threshold also plays an
important role in the evaluation and should therefore be stable as well. We believed that both our
early and late fusion approach would have a decent performance, but from our experiments none
of them was consistently better even though there sometimes was a significant difference between
the two approaches. Double fusion on the other hand showed very promising results, better than or
comparable to both early and late fusion. Moreover the actual thresholds seemed to be stable, based
on the number of retrieved videos for each event. Therefore we decided to submit a double fusion
run, using SVM and average fusion in the late fusion stage of double fusion, as our primary run.
We chose SVM, because the average performance of our Sequential Boosting SVM and Kernel Re-
gression experiments were very similar. Furthermore we preferred average fusion over a weighting
scheme learned by logistic regression, because we believed that the weighting scheme was likely
over-fitting to the training data.

1.3.2 DoubleKernelLG

In our experiments performed on the training data, we got better performance using a weighting
scheme learned by logistic regression for the late fusion part of double fusion. Also kernel regression
gave slightly better results than the other classifiers. However we believe that this behavior might



be explained by over-fitting and therefore not transform to the testing data. Nonetheless it is worth
being a non-primary run in case that it actually would be better.

1.3.3 Double3ClassifierLG

This is slightly more conservative run compared to the DoubleKernelLG run, because we use a
weighted combination learned by logistic regression of the three different classifiers: SVM, Se-
quential Boosting SVM and Kernel Regression. For the average performance across events, this
does not make a significant difference on average. However it does reduce the variance within
events, because not all three classifiers perform equally well for all events. Therefore it is a more
stable run when we take individual events into account.

1.3.4 Late3ClassifierAverage

The previous three submissions are all dependent on the early fusion performance, while this run
omits that part completely. For the threshold, we simply set the actual threshold to 1800 videos to
make the false alarm rate will be lower than 6%. Similarly to the Double3ClassiferLG, we again
performed an average fusion on the results from the three classifers to reduce the variance within
events.

1.4 Results

The results on the MED 2011 evaluation data are shown in Figure 1. We can see that all our runs
have similar performance, because we use the same features across all runs. The slight differences
in performance are therefore mainly due to overfitting, learning weights for different features in a
logistic regression setting did harm our performance in the final evaluation data. On the other hand
additional experiments showed that using kernel regression does perform better than SVM.

(a) primary run (b) DoubleKernelLG

(c) Double3ClassifierLG (d) Late3ClassifierAverage

Figure 1: Preliminary results.



2 Semantic Indexing (SIN)

2.1 Feature Extraction

As we know, MED task focus on the multimedia content analysis on video level. SIN task focus on
the video clips (shot) level. We can expect that, most of the useful low-level features in MED task can
also be useful for SIN task. However, considering the time-consuming problem, we only used three
most representative features for SIN task: SIFT, Color SIFT (CSIFT) and Motion SIFT (MoSIFT).
SIFT and CSIFT describe the gradient and color information of images. MoSIFT describes both the
optical flow and gradient information of video clips. Since the Harris-Laplace detectors only can
detect a few feature points for some simple scenes such as sky, we also used dense-sampling detector
to sample feature points besides Harris-Laplace detector. The more details about these features
please refer to Section 1.1. Generally, these three features provide most of the useful information
for SIN task.

2.2 Sequential Boosting SVM

2.2.1 Problem Analysis

In feature extraction, we got the spatial bag-of-words feature representation for every shot. With
these low-level feature representations, the most popular solution is to train a two-class non-linear
kernel SVM classifier for every concept. However, as the increasing of training samples, this so-
lution has some problems. For this year’s SIN task, the development set includes around 11,000
videos and 26,000 shots. Obviously, we are facing a large-scale classification problem. As shown
in the Figure 2(a), among 346 concepts, there are 152 concepts have over 50,000 labeled samples.
Only 56 concepts have less than 10,000 labeled samples. The time cost becomes a big issue if we
want to train a non-linear kernel SVM classifier on the over 50,000 training samples. Furthermore,
the labeled samples for each concept are extreme unbalanced. In Figure 2(b), we analyzed the ratio
between negative samples and positive samples. There are 65 concepts whose number of negative
samples is over 1000 times than the number of positive samples. There are 189 concepts which the
ratio between negative and positive samples is over 100. Only 46 concepts have reasonable balanced
training data. Their ratios between negative and positive samples are between 10 and 0.1. As a re-
sult, the SVM’s optimal hyperplane will be biased toward the negative samples due to the unbalance
of training samples. Therefore, we proposed the Sequential Boosting SVM to deal with large-scale
unbalance classification problem.

(a) the number of labeled samples (b) ratio between positive and negative samples

Figure 2: SIN Label Analysis

2.2.2 Bagging and AdaBoost

The proposed Sequential Boosting SVM comes from the idea of Bagging and AdaBoost. The main
ideas of Bagging and AdaBoost are:

• Bagging [1]: The basic idea of Bagging is to train multiple classifiers. The training sam-
ples for each classifier are generated by uniformly sampling with replacement. The final
prediction is the combination by average the multiple classifiers.

• AdaBoost [6] [14]: The basic idea of AdaBoost is to train a sequence of weak classifiers
by maintaining set of weights over training samples and adaptively updating these weights



after each Boosting iteration: the samples that are misclassified gain weight while the sam-
ples that are classified correctly lose weight. Therefore, the future weak classifier will be
forced to focus on the hard samples. Finally, the combination of these weak classifiers will
be a strong classifier.

2.2.3 Sequential Boosting SVM

Intuitively, Bagging strategy can help us to solve the large-scale unbalance classification problem.
Firstly, Bagging strategy divides the large-scale training problem to several smaller training prob-
lems. Each of them only contains a reasonable number of training examples. The training time
cost will not a big issue. Meanwhile, to overcome the unbalanced problem, we can keep all of the
positive examples and only execute the random sampling on negative examples. The number of
sampled negative examples of each set is the same with the number of positive samples. Therefore,
each classifier will be trained on a balanced number of positive and negative samples. This is the
Asymmetric Bagging strategy proposed in [18]. However, since the training data for SIN task is
extreme unbalanced and its size is large, in most of cases, the sampled examples for each bagging
classifier cannot cover the whole training examples. This will hurt the final performance.

To improve the performance of bagging classifiers, an intuitive solution is to choose the most im-
portance examples for each bagging classifier. Therefore, even the bagging classifiers only use a
limited number of training examples, the sampled most importance examples already contain the
most information of the whole training set. Inspired by the main idea of AdaBoost weighting [14],
we proposed the Sequential Boosted Sampling strategy. The adaptively updating weights of training
examples are used as a metric to measure the importance of training examples. Examples that can
be easily misclassified get high possibility to be sampled. Examples that can be easily classified get
low possibility. Therefore, the small classifier will focus on the hard examples, which will boost the
performance even only a small part of training examples are used.

The algorithm of Sequential Boosting SVM is described in Algorithm 1.

Algorithm 1: Algorithm of Sequential Boosting SVM.

Input: positive example set S+ = (x+
1 , y

+
1 ), . . . , (x

+
N+ , y

+
N+), where y+i = 1; negative example set

S− = (x−
1 , y

−
1 ), . . . , (x

−
N− , y

−
N−), where y−i = 0; SVM classifier I; number of generated

classifiers: T; sample K+ positive examples and K− negative examples in each iteration.
begin

D+
1 (i) = 1/N+;

D−
1 (i) = 1/N−;

for t← 1 to T do
Sample:

• Sample positive example set S+
t from S+ via distribution D+

t , |S+
t | = K+;

• Sample negative example set S−
t from S− via distribution D−

t , |S−
t | = K−;

Train SVM classifier: Ct = I(S+
t ,S−

t );
Predict: C∗(xi) =

1
t

∑t
p=1 Cp(xi);

Update:

• D+
t+1(i) =

D+
t (i)

Z+
t

× (1− C∗(x+
i )), where Z+

t is a normalization factor (chosen so

that D+
t+1 will be a distribution);

• D−
t+1(i) =

D−
t (i)

Z−
t

× (1− C∗(x−
i )), where Z−

t is a normalization factor (chosen so

that D−
t+1 will be a distribution);

Output: classifier C∗(xi) =
1
T
∑T

p=1 Cp(xi)

2.3 Fusion

Generally, there are two kinds of fusion methods. One is early fusion, which combines different
features before training classifier. The other is late fusion, which fuses the prediction scores of



different features’ classifiers. Considering the time cost to train classifier, we only took early fusion,
which only need train a classifier. In order to explore multi-modal features, we also design a multi-
modal Sequential Boosting SVM. In each layer, not only the training samples will be re-sampled by
their weights, but also the using feature will be change Sequentially. Since we extracted five kinds of
features for SIN task: MoSIFT spatial bag-of-word (MoSIFT), SIFT spatial bag-of-word by Harris-
Laplace detector (SIFT-HL), SIFT spatial bag-of-word by dense sampling (SIFT-DS), Color SIFT
spatial bag-of-word by Harris-Laplace detector (CSIFT-HL) and Color SIFT spatial bag-of-word
by dense sampling (CSIFT-DS). We pre-computed the distance matrix between training data for all
of these five features. In early fusion part, we just weighted fused their distance matrix. We tried
several different kinds of fusion combination and got some combined features.

• SIFT-HL-DS: averagely fuse SIFT-HL and SIFT-DS;

• CSIFT-HL-DS: averagely fuse CSIFT-HL and CSIFT-DS;

• MoSIFT-SIFT-CSIFT: averagely fuse MoSIFT, SIFT-HL and CSIFT-HL;

• MoSIFT-SIFT2-CSIFT2: averagely fuse MoSIFT, SIFT-HL-DS and CSIFT-HL-DS.

2.4 Submission

This year, we trained 4 different kinds of models and submitted 4 runs.

• MoSIFT model: we used MoSIFT spatial bag-of-word feature and trained 10-layers Se-
quential Boosting SVM classifier. We submitted this as CMU 1 run.

• MoSIFT-SIFT-CSIFT model: we used MoSIFT-SIFT-CSIFT feature and trained 10-
layers Sequential Boosting SVM classifier. We submitted this as CMU 2 run.

• MoSIFT-SIFT2-CSIFT2 model: we used MoSIFT-SIFT2-CSIFT2 feature and trained
10-layers Sequential Boosting SVM classifier. We didn’t submit this run.

• MoSIFT-SIFT2-CSIFT2 multimodal: we used MoSIFT, SIFT-HL-DS and CSIFT-HL-
DS to train 20-layers multi-modal Sequential Boosting SVM. The order of the features is
MoSIFT, SIFT-HL-DS and CSIFT-HL-DS. We submitted this run as CMU 3 run.

• MoSIFT-SIFT2-CSIFT2 latefusion: we averagely fused the prediction scores from
MoSIFT-SIFT2-CSIFT2 model and MoSIFT-SIFT2-CSIFT2 multimodal and submitted
this as CMU 4 run.

The performance of the above runs are in Table 5. As we can see:

• MoSIFT spatial bag-of-word feature is a good feature for SIN task. Only MoSIFT itself
can help us get reasonable performance (mean infAP: 0.1064).

• SIFT-HL and CSIFT-HL are very complemental features for MoSIFT. After we combined
SIFT-HL and CSIFT-HL feature with MoSIFT feature, the mean infAP is improved from
0.1064 to 0.1337. We got about 30% improvement from SIFT-HL and CSIFT-HL feature.

• SIFT-DS and CSIFT-DS can improve the performance of SIFT-HL and CSIFT-HL in SIN
task. Based on CMU 2, after we combined SIFT-DS and CSIFT-HL, we got 5% improve-
ment from 0.1337 to 0.1407.

• Multi-modal Sequential Boosting SVM works slightly better than early fusion. The per-
formance of MoSIFT-SIFT2-CSIFT2 multimodal is 0.1464, which is 4% better than the
performance of early fusion 0.1407.

Table 5: The performances of submissions

Run ID model mean infAP of 50 concepts
CMU 1 MoSIFT model 0.1064
CMU 2 MoSIFT-SIFT-CSIFT model 0.1337

MoSIFT-SIFT2-CSIFT2 model 0.1407
CMU 3 MoSIFT-SIFT2-CSIFT2 multimodal 0.1458
CMU 4 MoSIFT-SIFT2-CSIFT2 latefusion 0.1464



2.5 Future work

In feature part, we only tried three most representative visual features. Obviously, for some concepts
in SIN task, such as Speech, Singing and Talking, the audio feature can be very useful. In our
current experiment of MED task, MFCC bag-of-word feature works well for MED task and is very
complementary to visual features. We will try MFCC audio feature to improve the current SIN
performance. In classification part, Sequential Boosting SVM works well for SIN task. However,
there is an open issue that how to decide the number of classifier layers. That will be another
future work for SIN task. In fusion part, Multi-modal Sequential Boosting SVM is a good solution
to combine different modalities. Currently, we used a fixed feature order. However, it will be an
interesting question that how to choose the most useful feature for next layer classifier.
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Abstract: We present a generic event detection system evaluated in the SED task of TRECVID 2011. We 

investigated a generic statistical approach with spatio-temporal features applied to seven events, which 

were defined by the SED task. This approach is based on local spatio-temporal descriptors, called MoSIFT, 

and generated by pair-wise video frames. Visual vocabularies are generated from cluster centers of 

MoSIFT features, which were sampled from the event video clips. We also estimated the spatial 

distribution of actions by over-generated person detection and background subtraction. Different sliding 

window sizes and steps were adopted for different events based on the event duration priors. Several sets of 

one-against-all action classifiers were trained using cascade non-linear SVMs and Random Forests, which 

improved the classification performance on unbalanced data just like the SED datasets. Results of 9 runs 

were presented with variations in i) sliding window size ii) step size of BOW, iii) classifier threshold and iv) 

classifiers. The performance shows improvement over last year on the event detection task. 

1. Introduction 

Surveillance video recording is becoming ubiquitous in daily life for public areas such as supermarkets, 

banks, and airports. This has attracted more and more research interests and experiences rapid advances in 

recent years. A lot of schemes have been proposed for the human action recognition, among them, local 

interest points algorithm have been widely adopted. Methods based on feature descriptors around local 

interest points are now widely used in object recognition. This part-based approach assumes that a 

collection of distinctive parts can effectively describe the whole object. Compared to global appearance 

descriptions, a part-based approach has better tolerance to posture, illumination, occlusion, deformation and 

cluttered background. Recently, spatio-temporal local features [1-6] have been used for motion recognition 

in video. The key to the success of part-based methods is that the interest points are distinctive and 

descriptive. Therefore, interest point detection algorithms play an important role in a part-based approach.  

The straightforward way to detect a spatio-temporal interest point is to extend a 2D interest point 

detection algorithm. Laptev et al. [2] extended 2D Harris corner detectors to a 3D Harris corner detector, 

which detects points with high intensity variations in both spatial and temporal dimensions. In other words, 

a 3D Harris detector finds spatial corners with velocity change, which can produce compact and distinctive 

interest points. However, since the assumption of change in all 3 dimensions is quite restrictive, very few 

point results and many motion types may not be well distinguished. Dollar et al. [7] discarded spatial 

constraints and focused only on the temporal domain. Since they relaxed the spatial constraints, their 

detector detects more interest points than a 3D Harris detector by applying Gabor filters on the temporal 

dimension to detect periodic frequency components. Although they state that regions with strong periodic 

responses normally contain distinguishing characteristics, it is not clear that periodic movements are 

sufficient to describe complex actions. Since recognizing human motion is more complicated than object 

recognition, motion recognition is likely to require with enhanced local features that provide both shape 

and motion information. Thus, MoSIFT features [8] are proposed. MoSIFT detects spatially distinctive 

interest points with substantial motion by pair-wise frames. They first apply the well-know SIFT algorithm 

to find visually distinctive components in the spatial domain and detect spatio-temporal interest points with 

(temporal) motion constraints. The motion constraint consists of a 'sufficient' amount of optical flow around 

the distinctive points. 

However, in the local interest point algorithms, most of them [1-7] did not care where the interest points 

located, as their experiment scenes are relative simple and clear, and most of conditions, just one or two 

peoples have some actions. However, these conditions seldom hold in real-world surveillance videos. Even 

the same type of actions may exhibit enormous variations due to cluttered background, different viewpoints 



and many other factors in unconstrained real-world environment, such as TREC Video Retrieval Evaluation 

(TRECVID) [9]. To our knowledge, TRECVID has made the largest effort to bridge the research efforts 

and the challenges in real-world conditions by providing an extensive 144-hour surveillance video dataset 

recorded in London Gatwick Airport. In this dataset, the cameras are fixed, but the scenes are very complex, 

and there are a lot of people walking through on the scenes. Thus, if we just adopt the local interest points 

to detect the events on the scene, there are a lot of noise interest points for some events. In TRECVID 2011 

Evaluation, there are 7 required events such as “CellToEar”, “Embrace”, “ObjectPut”, “Pointing”, 

“PeopleMeet”, “PeopleSplitUp” and “PersonRuns”. All of them are relative to the human. Therefore, we 

will use detection methods, such as human detection and foreground object subtraction, and tracking 

approaches to locate these interest points, and filter the noise interest points. Finally, we also adopt the 

results of human detection to estimate the correctness of detection.  

In the following section, we will describe our system overview, and then the MoSIFT algorithm, the 

human detection and tracking will be introduced. After that, the experiments and discussions will be given. 

Finally, we will conclude the paper.  

2. System Framework 

For the tasks in TRECVID 2011 Event Detection Evaluation, we focus on human-related events. We 

mainly follow the framework we employed in TRECVID 2009 and 2010 Evaluation, which incorporates 

interesting point extraction, clustering and classification modules. In TRECVID 2009 Evaluation, the 

MoSIFT interesting points are extracted for each video firstly, and then Bag-of-Words (BoW) are adopted. 

After that, the cascade SVM will be trained. The details can be viewed in [16]. 
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Figure 1: The framework of our surveillance event detection system 
 

In contrast, we extend our framework by three kinds of processing. Firstly, visual vocabularies were 

sampled from the event part video features. 3000 cluster centers were generated by K-means algorithm. In 

general, instance sampling from positive data might cause over fitting. But in surveillance video event 

detection, since the background did not change much, more positive samples might cause better video 

representation than random samples in visual vocabulary selection procedure. Secondly, each event had 

different durations. Laptev [18] tried several kinds of slide window size in Bag-of-Word procedure. We 

followed this idea and used three kind of slide window size for different event. Thirdly, we also used 

Spatial Bag-of-Word for a better video representation. Zhu [19] used a 3 layer spatial pyramid, 1x1 to 4x4, 

to represent the video. Laptev [18] used localization map to construct the BoW. Their experiment shows 

that localization map was better than grid spatial Bag-of-Word. However, localization map was based their 

additional annotation. Following the same idea, we used person detection and background subtraction 

analysis to find hot regions of actions automatically. Based on that region, we defined a different grid for 

video representation which will be introduced in subsection 3.4. Fourthly, for each frame, the MoSIFT 

points were extracted unsupervised. But these feature points might generate not by action but by noise, and 

we cannot discriminate them. Thus, the over generated human detection algorithm was adopted. We kept 

these MoSIFT points located in the region of human. Fifthly, both cascade SVM and Random Forest 

classifiers were trained for solving the unbalanced training and testing data. After got the probabilities of 



each event, we fused these results. The system framework is illustrated in the Figure.1.  

3. MoSIFT Feature Based Action Recognition 

For action recognition, there are three major steps: detecting interest points, constructing a feature 

descriptor, and building a classifier. Detecting interest points reduces the video from a volume of pixels to 

compact but descriptive interest points.  

This section outlines our algorithm [8] to detect and describe spatio-temporal interest points. It was 

shown [8] to outperform the similar Laptev’s method [2]. The approach first applies the SIFT algorithm to 

find visually distinctive components in the spatial domain and detects spatio-temporal interest points 

through (temporal) motion constraints. The motion constraint consists of a 'sufficient' amount of optical 

flow around the distinctive points.  

3.1. Motion Interest Point Detection and Feature Description 

The algorithm takes a pair of video frames to find spatio-temporal interest points at multiple scales. Two 

major computations are applied: SIFT point detection [10] and optical flow computation matching the scale 

of the SIFT points.  

SIFT was designed to detect distinctive interest points in still images. The candidate points are 

distinctive in appearance, but they are independent of the motions in the video. For example, a cluttered 

background produces interest points unrelated to human actions. Clearly, only interest points with sufficient 

motion provide the necessary information for action recognition.  

Multiple-scale optical flows are calculated according to the SIFT scales. Then, as long as the amount of 

movement is suitable, the candidate interest point contains are retained as a motion interest point.  

The advantage of using optical flow, rather than video cuboids or volumes, is that it explicitly captures 

the magnitude and direction of a motion, instead of implicitly modeling motion through appearance change 

over time. 

Motion interest points are scale invariant in the spatial domain. However, we do not make them scale 

invariant in the temporal domain. Temporal scale invariance could be achieved by calculating optical flow 

on multiple scales in time.  

After getting the MoSIFT interest points, we need describe these points. Appearance and motion 

information together are the essential components for an action classifier. Since an action is only 

represented by a set of spatio-temporal point descriptors, the descriptor features critically determine the 

information available for recognition.  

The motion descriptor adapts the idea of grid aggregation in SIFT to describe motions. Optical flow 

detects the magnitude and direction of a movement. Since, optical flow has the same properties as 

appearance gradients, the same aggregation can be applied to optical flow in the neighborhood of interest 

points to increase robustness to occlusion and deformation.  

The main difference to appearance description is in the dominant orientation. For human activity 

recognition, rotation invariance of appearance remains important due to varying view angles and 

deformations. Since our videos are captured by stationary cameras, the direction of movement is an 

important (non-invariant) vector to help recognize an action. Therefore, our method omits adjusting for 

orientation invariance in the motion descriptors. 

Finally, the two aggregated histograms (appearance and optical flow) are combined into the descriptor, 

which now has 256 dimensions. 
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with image resolution 720×576 at 25 fps. 
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to partition the frame in this way because according to our empirical observation in training set, 
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that MoSIFT feature reasonably captures the areas with human activity. As different sliding window size 

can affect the final performance, in the experiment we manually set different window sizes for different 

events to ensure the window can capture the whole event. E.g. in our primary submission, for the event 

“ObjectPut”, “PeopleMeet” and “PeopleSplitUp”, the window size is set to 60 frames and repeats every 10 

frames as these event cover a relatively long time-span; whereas for the event “PersonRuns”, “CelltoEar”, 

Embrace and Pointing , the window size is set to 60 and repeats every 15 frames. 

  We assume that an event can be described by a combination of different types of small motions. 

Therefore we use BoW to quantify MoSIFT feature to a fixed number vector feature of each key frame. We 

use K-means clustering to find the conceptual meaningful clusters and each cluster is treated as a visual 

word in BoW approach. All the visual words consist of a visual word vocabulary. Then interest points in 

each key frame are assigned to clusters in the visual vocabulary which are their nearest neighbors. In the 

end, each key frame is presented by a visual BoW features. In our experiments, the vocabulary size is 

, and a soft boundary to form our bag-of-word features is applied. The spatial bag-of-word is also 

incorporated while constructing the resulting vocabulary. Each frame is divided into 8 tiles i.e. , 

 and  rectangular tiles as illustrated in Figure 5. Consequently the dimension of the resulting 

BoW features is . Once the BoW features are obtained, a binary SVM [11] classifier 

with a  kernel is trained for each event. Finally we apply one-against-all strategy to construct action 

models. 

The sliding window results in a highly unbalanced dataset (positive windows are much less frequent than 

negative windows). Two approached is conducted to tackle the unbalanced data. The first is cascade SVM. 

We build a one, five and ten layers cascade classifier to overcome this imbalance in the data and reduce 

false alarms. For each layer, we choose an equal ratio of (positive vs. negative) training data to build a 

classifier to favors to positive examples. This leads the classifier with high detection rates. In the training 

process, the cross-validation is adopted. By cascading five or ten layers of these high detection rate 

classifiers, we can efficiently eliminate a good amount of false positives without losing too many detections. 

We also aggregate consecutive positive predictions to achieve multi-resolution. The second approach is 

under sampling the majority class. Each sub-dataset is constructed in a way that all positive instances are 

preserved and negative instances are randomly supplemented. We choose negative to positive ratio 2.5 to 

reflect the natural imbalance in data. For each sub-dataset, we train a model using the random forest 

algorithm, in which the number of trees in forest is set to 100 and the maximum number of features is set to 

2000. Finally all models are trained and aggregated together by averaging their votes. The empirical 

analysis suggests both solutions can improve the performance on unbalanced dataset.  

Figure 6 summarizes the DCR(Detection Cost Rate) analysis for some of our this year’s final 

submissions. Fig.6 (a) illustrates our primary submission, in which the window size is set to 60 frames and 

repeats every 10 frames for the event “ObjectPut”, “PeopleMeet” and “PeopleSplitUp”. The window size is 

set to 60 and repeats every 15 frames for other events. Fig.6 (b) illustrates our submission version 6, in 

which the window size is set to 60 frames and repeats every 10 frames for all events. Fig.6 (c) illustrates 

our run 7th, which share the same sliding window setting with our primary submission. The difference lies 

in this version is that it adopts the random forest rather than the cascade SVM used in other submissions. It 

can be seen that in our primary submission (SVM) the Actual DCR (ADCR) and Minimum DCR (MinDCR) 

are quite similar, which is mainly because we search the best threshold in the training set. Generally, both 

cascade SVM classifiers and random forest classifiers are robust. Although, generally, cascade SVM 

classifiers outperform random forest classifiers, random forest classifiers are much faster and give 

relatively good predictions. 

 



 

 

 

Figure 6: DCR (Detection Cost Rate) Analysis results
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  Table 1 summarizes the comparison between this year’s result and last year’s result in terms of MinDCR, 

in which the first and the third row represents the best score of our 2010 and 2011 submission for each 

event, respectively; the second row indicates the best score for each event reported in TRECVID 2010 

document[17]. It can be seen that, compared with our last year’s result, we improve the performance for the 

event Embrace, “PeopleSplitUp”, “PersonRuns” and “Pointing”, in which “Embrace”, “PeopleSplitUp” and 

“PersonRuns” even beats the last year’s best results. The most significant improvement we achieve this 

year regards to the event “PeopleSplitUp”, in which the MinDCR is reduced by . The improvement 

is probably credited to the larger vocabulary and the introduction of spatial BoW. However, this strategy 

results in a considerable high dimension space, e.g. this year’s 24,000 dimension versus last year’s 2,000. 

Therefore efficient algorithms are recommended to be applied in this considerable high dimension space, 

which explains the reason of adopting cascade SVM and random forest algorithm in our experiment.   

 
Table 1: Comparison between the best result of this year and last year in MinDCR 

 
 CellToEar Embrace ObjectPut PeopleMeet PeopleSplitUp PersonRuns Pointing 

2010 CMU 1.0003 0.9838 1.0003 0.9793 0.9889 0.9477 1.0003 

2010 Best 1  0.9663  0.9971  0.9787  0.9889 0.6818  0.996  

2011 CMU 1.0003 0.8658 1.0003 0.9684 0.7838 0.837 0.9996 

the result attributes to IPG-BJTU  the result attributes to TJU  the result attributes to QMUL-ACTIVA  the 

result attributes to CRIM. The best score for each event is in bold 

   

  Table 2 presents the comparison between CMU results with TRECVID 2011 best results. The 

comparison is conducted on each team’s primary submission. The “Best TRECVid Sys. MinDCR” column 

denotes for the best MinDCR reported in TRECVID 2011 Formal Evaluation Comparative Results. The 

ranking column represents our results’ ranking among all groups in terms of the MinDCR. 
 

Table 2: Primary run results comparison between CMU and TRECVID 2011 best results 

 

Actions Ranking 
Best TRECVid Sys. 

MinDCR 

CMU sys. Primary Run 

MinDCR ADCR #CorDet #FA #Miss 

CellToEar 1 1.0003 1.0003 1.0365 1 127 193 

Embrace 1 0.8658 0.8658 0.8840 58 657 117 

ObjectPut 4 0.9983 1.0003 1.0171 0 57 620 

PeopleMeet 1 0.9724 0.9724 1.0100 45 336 404 

PeopleSplitUp 5 0.8809 1.0003 1.0217 3 115 184 

PersonRuns 1 0.8370 0.8370 0.8924 26 413 81 

Pointing 3 0.9730 1.0001 1.5186 132 1960 931 

 

5. Conclusion 

In this paper we have described our implementation to SED TRECVID2011. A real surveillance dataset 

from London Gatwick airport have been analyzed, using spatio-temporal interest points descriptor, MoSIFT, 

and spatial feature selection and representation. The obtained performances show good scores using this 

generic scheme, in particular for three actions: “PersonRuns”, “PeopleMeet” and “Embrace”. In the future 

work we plan to extend the current framework with better spatio-temporal models of actions as well as 

person-focused analysis of video. 
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