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Abstract— In this paper we present the results of our partici-
pation to the Trecvid tasks Copy Detection and Multimedia Event
Detection. It focus, in particular, on the comparison of systems
for the CCD task, by analyzing the importance of 1) the audio
module, 2) the video module and of 3) the fusion module.

I. INTRODUCTION

This notebook paper presents the results of INRIA at
TRECVID’2011 for the copy detection (CCD) and multimedia
event detection (MED) tasks. It focuses, in particular, on the
copy detection task, in which we have obtained very good
results.

Our CCD system is an improvement of the one we used
2010 [6]. Therefore we will mainly focus on this year’s
additions, and on the insight provided by the comparison of
our runs, which are given below:

Run Profile Visual Audio Fusion Cut
DEAF balanced yes no N/A yes
AUDIOONLY balanced no yes N/A yes
THEMIS balanced yes yes late yes
ZOZO balanced yes yes late no
DODObal balanced yes yes early yes
TYCHE nofa yes yes late yes
DODOnofa nofa yes yes early yes

Our submitted runs were designed to measure the contribution
of the audio and visual content, and to evidence the impact
of our early fusion module. Our best runs are those that
include all the modalities and this new module, i.e., the
DODObal and DODOnofa runs. The validation was done on the
TRECVID’2010 set of queries, on which we obtained much
better performance with early fusion than with late fusion
module, as shown in the experiments of Section V. Our late
fusion method is very similar to the one we used in 2010,
except that we used the same logistic regression package as
for the early fusion.

Although the other runs are suboptimal, the runs based on
late fusion obtained better performance than the DODOs runs
on a few transformations. In our opinion, this might be an
artifact of the NDCR measure, which is very sensitive to the
presence of a single false positive.

Comparing our runs on the validation set on our 2011’s per-
formance given by NIST leads to the following observations:

1) The performance of the DEAF and AUDIOONLY runs
are comparatively poor. Combining the audio and visual
modalities is very important.

2) Our pure visual system is better than our audio system.

3) The early fusion system improves a lot compared with
the late fusion system.

4) The cost of a false positive being very high for the
NDCR measure, a common choice, adopted by several
participants, consists in returning a maximum of 1 result
per query, in order to avoid false positive. Prior to
submission, we considered this choice as safer. However,
due to the presence of identical videos in the reference
dataset, this choice raises the risk of missing a true
positive. The “Cut” column in the table above indicates
the only run, namely ZOZO, for which we kept more
than one result when the first results had nearly identical
scores. To our surprise, this run obtained better result
than the THEMIS run, which is exactly the same system
but keep the best hypothesis (if any).

5) The NDCR measure is strongly dependent on the rank
of the first false positive appears, even in the balanced
profile.

The MED system we developed is disjoint from the CCD.
It mixes 3 modalities: audio, video and image. We submitted
runs that combine all or part of them:

Run Video Audio Image
3CHAN: yes yes yes
MBH: yes yes no
NOAUDIO: yes no no
STILL: no no yes

Overall we found that, to classify the events, the video
(motion) descriptors were most useful. Other modalities do
not necessarily improve the results.

The paper is organized as follows. Sections II and III
describe our audio and visual matching systems for the CCD
task, respectively. The new early CCD fusion system is de-
tailed in Section IV, and our results are analyzed in Section V.
Finally, we give a brief overview of our MED system in
Section VI.

II. CCD – AUDIO MATCHING: BABAZ

This section describes the main components of BABAZ,
which is a audio search system specifically designed for a copy
detection setup such as the one considered in TRECVID [16],
where the signal is the audio track of a video, i.e., that
typically includes voices, silences and occasionally music.
The copied audio tracks are transformed by different kinds of
transformations, such as strong pass-band filter, compression,
mixing, single- or multi-band companding, etc.
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COMPOUND DESCRIPTOR.

A. Pre-processing

The audio tracks extracted from an audio corpus are not
necessarily homogeneous. Sample rates as well as encoding
quality vary significantly from one track to another. It is in
particular the case in the Internet Archive dataset used in the
TRECVID’s copy detection task, where the videos are mainly
amateur videos captured and encoded by different devices
and audio codecs. In order to deal with this variability in a
consistent way, all the tracks are resampled to 32,000 Hz. We
use the right stereo channel only when stereo is available.

B. Feature extraction: filter banks

Hereafter, we detail how we extract descriptors from the
audio waveform. The signal is ran through a pre-emphasis
filter to compensate for the spectral slope and divided into
overlapping short-term windows of 25 ms taken every 10 ms.
In each window, the short-term spectrum is represented by
log-energies at the output of overlapping band-pass filters. We
use 40 filters spread along the [500 Hz,3000 Hz] frequency
range on a Mel scale. As a result, the dimensionality of the
descriptors is d = 40.

The representation based on these filters gives a rough
approximation of the signal’s spectral shape in the frequency
range considered while smoothing out the harmonic structure,
if any, and is therefore robust to many spectral distortions.
We have used the freely available spro software1 for the
generation of filter banks. This software also includes an
efficient implementation of the widely used MFCC descriptors.
However, in our experiments, these descriptors are signifi-
cantly outperformed by the filter banks.

C. Compound descriptors and energy invariance

The temporal consistency provided by a single filter bank is
limited, as their temporal span is limited and only frequencies
are considered. This is problematic since the database is large:
the filter banks themselves might not be discriminative enough
to identify a matching hypothesis with sufficient reliability.

In order to increase the discriminative power of the de-
scriptor, the temporal aspect is emphasized by concatenating
several filter banks, as done in Serra’s thesis [15] in a context
of cover detection.

1http://gforge.inria.fr/projects/spro

For a given timestamp t, 3 successive filter banks are
extracted at timestamps t − δ, t and t + δ, producing a
compound descriptor of dimensionality 3d (i.e., 120). We set
δ = 30 ms in order to avoid overlapping. We have performed
a few experiments on a validation dataset to decide on how to
take into account this dynamic aspect, e.g., using derivatives
of the filter bank with respect to time. Compounding the
descriptors appeared a reasonable choice. As illustrated in
Figure 1, the resulting span of this descriptors is 85 ms. This
approach favors the temporal aspect by taking into account the
dynamic behavior of the frequency energies, at the cost of an
increased descriptor dimensionality.

Descriptors are compared with the Euclidean distance. For
large vector databases it allows for efficient indexing algo-
rithms. In order to take into account attacks on the volume
(signal energy), the descriptor is finally made invariant by
subtracting its mean.

D. Approximate nearest neighbor search

As the exact search is not efficient enough, BABAZ uses an
approximate nearest neighbor search technique. Many methods
exist for this task, such as the popular locality sensitive
hashing [2] search algorithms and the FLANN package [12].
However, this step has a major impact on both efficiency and
search quality, and only a few methods are able to search in
hundreds of millions of descriptors with reasonable quality, as
required by our method to index thousands of hours of audio.

BABAZ uses the IVFADC indexing method of [9], which
is able to index billions of descriptors on a commodity
server. It finds the approximate k nearest neighbors using
a compression-based approach, and relies on an inverted
structure to avoid exhaustive search. This approximate nearest
neighbor method implicitly sees multi-dimensional indexing
as a vector approximation problem. It is proved [9] that
the square error between the distance and its estimation is
bounded, on average, by the quantization error. This ensures,
asymptotically, near perfect search results when increasing the
number of bits allocated for the quantization indexes:

The main parameters of this method are the number of bytes
b used per database vector and the number c of inverted lists
associated with the partitioning of the feature space (learned
by k-means). In our case, we set b = 24 bytes and use multiple
assignment [9] on query side, leading to visit 16 inverted lists
out of c = 16, 384.

E. Scoring vote and reciprocal nearest neighbors

The search technique returns a list of k (approximate)
nearest neighbors. A conventional method to exploit them
consists in assigning a vote of 1 to all the corresponding audio
tracks, or alternatively, a function of the rank or of the distance.
Based on a recent state-of-the-art work [8] in image search,
we adopt a different strategy, which is illustrated in Figure 2.

Denoting by dk(q) the distance between the query descriptor
and its k-th nearest neighbor, the quantity dk(q) − d(q, i) is
shown, based on a mutual information criterion [8] measured
on image descriptors, to better reflect the quality of the match.



Fig. 2
RECIPROCAL NEAREST NEIGHBORS AND OF OUR VOTING STRATEGY.

This is also the case for our audio descriptors, so we adopt
this weighting scheme.

The distance dk(q) is relative to the query. In order to
symmetrize the relationship between the query and database
descriptors, it is worth considering the reciprocal nearest
neighbors of the database vector, or more specifically the
typical distance between the database vector and its own k-
nearest neighbors.

In practice, computing the reciprocal nearest neighbors is
impractical: the audio descriptor database may contains up to
billions of vectors. If exact nearest neighbor search is used,
then it turns out that each database vector has to be submitted
to the system. Although some approximate strategies [3] were
proposed to compute the nearest neighbor graph, these ap-
proaches were only tested on up to 1 million vectors. However,
we are not interested in the neighbors themselves, but in the
typical distance of a database vector to its neighborhood. This
reciprocal typical distance is estimated on a limited subset
of 1 million vectors. In this case, the parameter k associated
with the database vectors has to be adjusted to account for the
smaller size of this subset.

F. Re-ranking

Finally, in the spirit of [10], the hypotheses are re-ranked
based on exact descriptors to obtain the exact distances, in
order to increase the precision of the proposed similarity. The
difference with [10] is that we use the original descriptors and
not only a compressed version of these.

G. Energy weighting

Video tracks contain many silences. Those are filtered when
the signal and consequently the descriptor is zero. However,
there are also many descriptors extracted on audio frames
containing almost no energy, but which are not pure silence.
Filtering audio segments with low energy may lead to loose
some precious information, and reduce the accuracy of the
localization. For this reason, we adopt a smoother strategy and
multiply the score associated with the match with the energy
of the query descriptor.

Fig. 3
ILLUSTRATION OF THE TEMPORAL HOUGH TRANSFORM: THE AUDIO

MATCHES OUTPUT BY THE APPROXIMATE SEARCH ENGINE ARE

COLLECTED AND SUMMED UP FOR EACH HYPOTHESIS (id,∆T ). THIS

DILUTES THE SCORES OF FALSE POSITIVES OVER TIME SHIFT

HYPOTHESES.

H. Hough matching

BABAZ assumes that the transformations do not include any
acceleration. Given a query, for each of its audio descriptors
we first search for the k approximate nearest neighbors and
compute their weighting score based on the strategy exposed
above. We then vote for several alignment hypotheses (ab,∆T )
using the scoring method introduced above. Compared with
uniform voting, this brings a slight improvement at almost
no cost in efficiency. The video hypotheses with low scores
are filtered. On output, this Hough matching system returns a
maximum of 40 hypotheses per query. Each database track is
associated with a maximum of 3 ∆T hypotheses.

I. Detection of boundaries

At this point, for each query we may have several alignment
hypotheses (id,∆T ), where id is the database track identifier
and ∆T is the difference between the query and the database
timestamps. We use the whole set of descriptors and weight
their distance to produce a score per time instant. This score
is filtered in time and used to detect the boundaries defining
a matching segment. Each segment receives a score computed
from the individual scores for each time instant.

J. Shifted query

The audio descriptors are extracted every 10 ms, which leads
to reduce the quality of the comparison if the sampling of the
database track occurs in phase opposition, i.e., with a shift of
5 ms relative to the query track. To address this problem, we
submit several shifted version of the query to the system. For
instance, we create shifted versions of the query with shifts
of 2, 4, 6 and 8 ms. This, obviously, significantly impacts the
efficiency of the search by a significant factor, and should be
used when high precision is required only.
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Fig. 4
SUMMARY OF OUR BEST APPROACH FOR CONTENT-BASED COPY

DETECTION.

III. CCD – VISUAL MATCHING

We briefly describe our video indexing system, which did
not change with respect to Trecvid 2010. For more detail, see
[4] and [6].

A. Frame matching

Every 10th frame is extracted from the videos to analyze.
The images are described with a Hessian-Laplace detector,
followed by a CS-LBP descriptor [5].

Descriptors are quantized to a visual vocabulary of 200,000
words, and binary signatures of 48 bit [7] are computed on
each point. The signatures are indexed in an inverted file
system.

At query time, frames from the query video are analyzed
similarly and matched against the inverted file. Database
images that have most matches in common with the query
are retained for the next stage.

B. Temporal aggregation

Alignment hypotheses between the query and database
video sequence are generated with a 1D Hough transform
(similar to the audio system, see II-H).

Hypothetic video sub-sequence matches are constructed
from the frame matches used for each alignment estimated
by the Hough transform.

IV. CCD – COMBINATION OF CHANNELS

In the following, we call a set of temporally consistent audio
or video frames an hypothesis. As first step of the fusion
process, low level audio and image frame matches consistent
with the hypothesis parameters are gathered and precisely
aligned using a robust time warping procedure (section IV-
A). Then, different features are extracted based on the time
warping result to describe various aspects of the hypothesis
(IV-B). Finally, a classifier (IV-C) estimates the probability
that the hypothesis is correct or not based on these features.

We comment the results of the independent channels, the
fusion strategy (V) and how the fusion improves over a
classical late fusion (IV-D).

Fig. 5
EXAMPLE OF A COMPATIBILITY MATRIX BETWEEN A QUERY AND ITS

GROUND-TRUTH COPY IN THE DATABASE. COLUMNS (RESP. ROWS)
CORRESPONDS TO QUERY FRAME (RESP. RETRIEVED FRAMES) ORDERED

BY TIME AND COLORED PIXELS INDICATE THE PRESENCE OF A LOCAL

MATCH BETWEEN AUDIO DESCRIPTORS (RED PIXELS), IMAGE

DESCRIPTORS (BLUE PIXELS) OR BOTH (PURPLE PIXELS). BLACK PIXELS

SHOW THE OPTIMAL TIME WARPING PATH.

A. Robust time warping

1) The compatibility matrix: Given the time ranges on both
query and database side, audio and image frame matches
are gathered in order to build a compatibility matrix. In this
matrix, each cell (u, v) describes the similarity between the
query in the time range [u.∆I

q , (u+1).∆I
q ] and the database in

the time range [v.∆I
db, (v+1).∆I

db], where ∆I
q and ∆I

db are the
duration of a query and a database image frame, respectively.
An example of such matrix filled with image and audio frame
matches is presented in Figure 5.

Because audio and image frame durations are not the same,
an additional step is introduced to combine match scores:
each audio frame matches is attached to the closest image
frame match - the duration of an image frame is typically
400 ms, whereas audio frames only last 10 ms, so up to
(400/10)

2 audio frame matches can be allocated to a single
matrix cell. Furthermore, a geometric verification is processed
beforehand on all image frame matches: an affine transform
between the query and the database is estimated for the whole
hypothesis (refer to [4] for more details), and frame matches
not compliant with the affine transform are eliminated.

2) Cell-level similarity: Finally, a classifier computes a
similarity score in each matrix cell, taking into account both
audio and image matches in the cell. The classifier is a logistic
regression, that takes the following form:

h(x) =
1

1 + exp(−β>x)
,

where x is a feature vector describing both audio and image
cell content (see below), and β is the vector of regression
coefficients. The β is learned from a set of correct and
incorrect matches using the standard maximum likelihood



estimates with iteratively re-weighted least squares. We use
queries from Trecvid 2010 as a learning set.

The features x = [x1 . . . x4]> on which the classifier bases
its decision are:

• The maximum cumulated score of consistent audio frame
matches in the cell:

x1 = max
δt

∑
a∈A/tq(a)−tdb(a)=δt

score(a)

where A the set of audio frame matches attached to the
cell and tq(�), tdb(�) yields the timestamp of audio match
a on the query and database sides.

• The number x2 of image key-point matches compliant
with the estimated affine transform (ie. inliers); as well
as two normalized versions x3, x4 of this number: the
normalization factors are the total number of key-point
in the query frame and the database frame.

3) Time warping: A robust dynamic time warping proce-
dure finds the optimal path in the compatibility matrix. The
proposed algorithm is robust to holes in the path thanks to
a modification of the original algorithm: instead of comput-
ing the dynamic time warping using the standard formula
score(u, v)+max(DTW(u−1, v),DTW(u, v−1),DTW(u−
1, v − 1)), we define:

DTW(u, v) = score(u, v) + max
x<u,y<v

DTW(x, y). (1)

The optimal path is retrieved accordingly by iterating on

prev_cell(u, v) = arg max
x<u,y<v

DTW(x, y), (2)

where (u, v) starts at the bottom-right corner of the DTW
matrix. The result is essentially different of the standard time
warping for two reasons: (1) it allows jumping between non-
contiguous cells; and (2) it enforces a one-to-one assignment
constraint between query and database frames, because of
the strict inequalities in eq. (2). The one-to-one constraint
is important as some features used later to describe each
hypothesis are the sum of matching image or audio frame
scores, which can be over-estimated for still videos where each
frame resembles all other frames.

In the example in Figure 5, the optimal path found by
our algorithm is represented with black pixels. We call the
resulting assignment matching frames in the following.

B. Hypothesis description

The next step involves the ranking of the considered
hypotheses. For this task, features are extracted from the
result of the dynamic time warping and are then once again
fed into a logistic classifier. The extracted features can be
distributed in three categories: features concerning image only,
features concerning audio only and features concerning both
modalities.

All features are simple and cheap to compute, hence not
changing the computational cost of the proposed approach
with respect to a baseline approach without classifier.

1) Image features: We extract several features to describe
the quality of the matching image frames from a global
viewpoint:
• the number of matching image frames;
• the cumulated score of matching image frames;
• the image match density, which is the average proportion

of matching image frames per second;
• the maximum time lapse between two consecutive match-

ing image frames (i.e. size of holes), on the database side.
We experimentally observed incorrect hypotheses have
less regularly spread frame matches;

• the ratio of matching image frames on the total number
of image frame matches in the compatibility matrix;

• the fact that the query is flipped or not (the features has
value in {0, 1});

• the plausibility of the geometric transform: each of the
four coefficients specifying the affine transform (σ, r, α
and α2, see [4]) is assumed to follow a normal distribu-
tionN (0,Σ), and corresponding a-posteriori probabilities
are extracted for each coefficient for various Σ.

Additional features are generated as normalized versions of the
first two features above: the normalization factors include the
number of image frames in the hypothesis time range, the total
number of matching image frames in the compatibility matrix
and the hypothesis’ time length. Similar normalizations are
also applied to equivalent features in the audio and multimodal
descriptions.

Then, some more elaborate indicators based on the number
and the spatial distribution of matched key-points are com-
puted. In this perspective, we merge the points from the query
frames into a single virtual query image, and similarly on the
database side. The extracted features are:
• the matched area: we use a low-resolution accumulator

(15 × 10 pixels) to measure what area of the database
virtual frame is actually matched to the query frame.
To that aim, the accumulator is initially set to zero.
Then, each matched patch is “printed” in the accumulator
image. We map pixel values with x 7→ 1− s−x, s > 1 to
mitigate the influence of high values. The final score is
the sum over the accumulator pixels. We extract several
features by varying the s;

• the Kullback-Lieber (KL) divergence between the spatial
distributions P and Q of the matched key-points and all
available key-points (in the database frame). The KL-
divergence is calculated as

DKL(P ||Q) =
∑

P (i) log
P (i)

Q(i)
.

As with the accumulator, we used a 15 × 10 map to
quantify the distribution;

• every bin of the spatial distribution of the matching key-
points P is used as features as well (based on a coarser
5×4 map). This is useful, as some parts in the image are
more often incorrectly matched, for instance the top-right
corner where the channel’s logo is printed.

2) Audio features: Similarly, we compute several indicators
to describe the global quality of the matching audio frames:



TABLE I
MOST EFFICIENT FEATURES IN THE ORDER OF SELECTION OF OUR

BOOSTING-LIKE TRAINING PROCEDURE.

rank feature name transformation
1 matched area, s = 1.5 x
2 number of matching frames 1/(1 + x)
3 KL divergence x
4 matched area, s = 4.5 log(1 + x)
5 hypothesis length in s x
6 hypothesis length in s 1/(1 + x)
7 number of matching image frames 1/(1 + x)
8 top-left corner of P distribution

√
x

9 is query flipped? x
10 ratio of matching image frames x
11 max hole size between image frames 1/(1 + x)

• the total number of matching audio frames;
• the cumlated score of matching audio frames;
• the audio match density, which is the average proportion

of matching audio frames per seconds;
• the maximum time lapse between two consecutive match-

ing audio frames (i.e. size of holes), on the database side;
• the ratio of matching audio frames on the total number

of audio frame matches in the compatibility matrix.

3) multimodal features: Finally, a few multimodal indica-
tors are also computed, in which audio and image matching
frames are considered indifferently of their origin:

• the number of matching frames;
• the cumulated score of matching frames;
• the hypothesis length, measured between the first and last

frame match;
• the maximum time lapse between two consecutive match-

ing frames;
• the ratio of matching frames on the total number of frame

matches in the compatibility frames.

C. Logisitic classifier and feature selection

As one can see, many features are available for the training
(all in all, hundreds features are available, we omitted some
of them for space reasons). Because of this overwhleming
number, the training of the logistic classifier does not converge
easily, and the resulting classifier yields poor results.

We propose is to use a greedy boosting-like procedure to
select a small subset of all features. The algorithm proceeds
as follows: at each iteration, it trains a classifier using all the
already selected features and one additional feature, trying all
non-selected features in turn. It keeps the feature maximizing
the Average-Precision (AP) on a validation set. We iterate this
until the AP does not increase more than a small fixed value.

We also incorporate in the feature pool transformations of
the original feature values through 3 non-linear functions:
log(1 + x),

√
x and 1/(1 + x). We discovered that adding

those artificially generated features improves the classifier
performance up to 2% of AP.

The first features selected by our training procedure (i.e. the
most efficient ones) are presented in Table I along with the
associated transformation. We trained on the entire TRECvid

2010 query set, which represents about 40,000 positive hy-
potheses and more than 200,000 negative hypotheses. Overall,
the training of the classifier takes a few hours on a standard
computer. Note that we also tried using AdaBoost and a linear
SVM, but the training was much slower without enhancing the
result.

D. Late fusion

The easiest method to merge results is to combine the output
scores of the audio and video systems. As a baseline for the
early fusion, we implemented such a system.

In this late fusion approach, The image and audio systems
are run independently and their hypotheses are merged to
obtain the overall set of hypothesis and corresponding scores.
No further analysis is done on the media themselves. In
order to compare and fuse the scores from audio and visual
systems, their distribution is required for false positives and
true positives. Adjusting these scores on a common basis is
performed by using a logistic regression on both inputs, which
produces consistent output. This logistic regression is learned
on the TRECVID’2010 validation set.

On audio, the logistic regression takes into account
• The log-score initially produced by the audio system;
• The log-scores of the best three hypotheses;
• The length of the matching segment;
• The length of the query and database tracks.

Taking into account the scores of the other hypotheses is
motivated by the fact that the dynamics of the scores may
vary significantly from one query to another.

At this point both systems have a set of hypothesis with
similarly distributed scores. Some of those hypotheses are
shared by both modalities and others are present in only one
of them.

Intuitively, given the size of the database, a hypothesis
shared between image and audio is likely to be true positive
regardless of the scores: logistic regression is not appropriate
for this last fusion.

Of the true positives found by only one media, a significant
number of them were found by the image system only, whereas
very few were found by the audio system only. Our overall
strategy was therefore to use the video score as a baseline,
adding the audio score and a significant bonus to the hypothe-
sis shared with audio if either score was already positive, and
ignoring the hypotheses found by the audio system only.

V. CCD – THE RESULTS

In this section, we first show how our system improved over
the 2010 version. Then we compare the results with those of
other participants.

A. Comparison with 2010

Figure 7 shows the precision-recall curve of our system,
compared with the 2010 version (with corrected audio, see [6])
both are tested on the 2010 queries.

One can see that the precision is improved a lot due to the
improved weightings (both in audio matching and the fusion
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CCD – COMPARISON OF THE SEARCH ACCURACY (NDCR) IN 2010 AND 2011 (RESULTS GENERATED BY NIST).

A \ V 1 2 3 4 5 6 8 10

1 1 5 3 1 4 1 3 2

2 1 4 3 1 2 1 4 1

3 2 2 3 2 2 1 4 1

4 2 2 3 1 2 1 3 1

5 1 1 3 1 3 1 4 2

6 1 2 3 3 4 2 4 4

7 1 1 2 1 4 1 4 1

Video transformations
1: camcording
2: insertion of orginal video
in front of background
3: pattern insertion
4: compression
5: change in gamma
6: decrease in quality
8: post production
10: random transform

Audio transformations
1: none
2: mp3 compression
3: mp3 compression + companding
4: limit bandwidth + single-band com-
panding
5: mix with speech
6: mix with speech + multiband compress
7: bandpass + mix with speech + compress

Overall best NDCR: 0.00 (easy) 0.15 (hard)

TABLE II
RANK OF OUR BEST RUN, IN THE NOFA PROFILE, PER TRANSFORMATION. THE BACKGROUND COLORS OF THE CELLS GIVE AN INDICATION ON HOW

HARD THE TRANSFORMATION IS: IT ENCODES THE BEST PERFORMANCE (NDCR) OBTAINED OVER ALL PARTICIPANTS.
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Fig. 7
COMPARISON OF THE PERFORMANCE OF OUR 2010’S WITH OUR NEW

SYSTEM FOR 2011: PRECISION-RECALL.

module) introduced this year. This comes at a slight cost in
recall.

Between 2010 and 2011, the reference videos did not
change. There are the same number of queries and they are
generated exactly in the same way. Therefore, it is significant
to compare the NDCR measures. Figure 6 shows the compar-
ison on our runs, which is clearly in favor of the new system.

Especially the NOFA profile improved a lot. This is con-
sistent with the improvement of precision. In contrast, the
balanced profile did not improve as much. When comparing
with other participants, our runs in this profile are clearly
weaker.

B. Comparison of variants

The table below provides a comparison of the runs we
submitted for the balanced profile to evaluate the relative
importance of the components of our system (audio and
video core systems, late/fusion module). The performance is
compared using the mean and median of opt-NDCR over all
transformations.



Run channels Fusion Cut mean median
DEAF v N/A yes 0.258 0.209
AUDIOONLY a N/A yes 0.406 0.425
THEMIS a+v late yes 0.211 0.219
ZOZO a+v late no 0.194 0.200
DODObal a+v early yes 0.144 0.134

As observed in this table, the individual performance of the
DEAF and AUDIOONLY runs are poor: combining the audio
and visual modalities is important. The better performance of
the ZOZO run over the THEMIS run demonstrates that keeping
more than 1 result is interesting if these results have similar
yet high scores. Finally, as validated on 2010 set, our new
early fusion module brings a fair improvement over the late
fusion module.

C. Comparison with other participants

Table II shows how our runs perform with respect to others.
Relative to the other participants, our system is especially
efficient on difficult attacks like camcording (1) or image based
transforms (4, 6, 10). On easy ones like changing gamma or
inserting patterns (3, 4), the system is relatively less efficient.
This is probably because it is tuned to be very invariant to
strong attacks. This comes at a price in terms of discriminative
power (and computing cost...).

VI. MULTIMEDIA EVENT DETECTION

The goal of multimedia event detection is to classify video
clips into event categories, such as birthday party, getting a
vehicle unstuck and grooming an animal. Our approach com-
bines classifiers for three modalities—video, audio and still
images. The individual classifiers are described in sections VI-
A, VI-B and VI-C. The combination of classifiers is presented
in section VI-D. Results are discussed in section VI-E.

A. Video Features

The motion information in the video clips is described with
dense trajectories [17], which have shown to obtain state-of-
the-art results for video classification. The method extracts
dense trajectories by sampling points densely in each frame
and tracking them with a dense optical flow field. Trajectories
are described with motion boundary histogram descriptors
(MBH) [17], [1]. MBH descriptors encode the relative motion
between pixels and are robust to camera motion. Derivatives
are computed separately for the horizontal and vertical com-
ponents of the optical flow and are quantized in a histogram.

Trajectories and their description are computed with an on-
line available code 2. We use the following parameters for
trajectory extraction: 8 spatial scales, a spatial sampling stride
of 8 pixels, a trajectory length of 20 frames and a dense
point re-sampling every 5th frame. The MBH descriptor is
of dimension 192, i.e., MBHx and MBHy components are
represented by 96 dimensions each corresponding to a 2x2x3
spatio-temporal grid with a 8 bin histogram in each cell.

2http://lear.inrialpes.fr/people/wang/dense_trajectories

A video clip is represented by a bag-of-features (BOF).
To construct the codebook we randomly select two million
MBH descriptors from 2000 training videos and compute 4000
clusters (“visual words”) with k-means. A MBH descriptor is
assigned to the closest cluster center using Euclidean distance.
The BOF represents the frequency per visual word and is nor-
malized with the L1 norm. Video classification is performed
with a non-linear χ2 kernel. We train a one versus all support
vector machine (SVM) classifier for each event. The parameter
γ is set to the average distance between training examples and
the parameter C is computed using 5-folds cross-validation.

We train each classifier with a subset of the training videos,
i.e., approx. 200 positives and 6500 negatives for each event.
The negative video clips correspond to roughly 2000 videos
from the class NULL and 4500 clips form the other event
classes.

B. Audio Features

The audio signal is described with Mel-frequency cepstral
coefficients (MFCC) [14], which are widely used in speech
recognition and music genre classification. For our system we
use an on-line available code 3. We apply a stereo-to-mono
transformation to our audio signals by averaging the left and
right stereo channels. We compute 32ms time-window MFCC
descriptors of size 30 with 50% of window time overlap.

Audio features are also quantized with a bag-of-features
representation. We extract 4000 clusters with k-means from
500k audio signals. To obtain the audio classifiers, we train
an SVM classifier with a non-linear χ2 kernel. The training
set consists of the audio signals of the videos used to train the
video classifier. We use a one versus all SVM, the parameter
γ is set to the average distance between training examples and
the parameter C is computed using 5-folds cross-validation.

C. Image Features

For the image classifier, we extract image features for every
10th frame of a video. For each image we extract SIFT descrip-
tors [11] on a dense grid at 5 scales with horizontal and vertical
steps of 4 pixels. The dimension of the descriptors is reduced
using PCA from 128 to 64 dimensions. The descriptors of an
image are, then, aggregated into a Fisher vector [13]. Here,
we use a Fisher vector based on a Gaussian mixture model
with 64 Gaussians—shown to be a good trade-off between
computational efficiency and classification performance. A
linear one versus all SVM classifier is, then, trained on the
Fisher vectors. We use a subset of 1000 positive and 5000
negative frames for training each event classifier. The positive
frames are obtained from approx. 100 videos and the negatives
from 5000 videos. The C parameter is selected using 5-
fold cross-validation (separately for each event category). We
ensure that frames from a video are in the same fold.

To assign a label to a video clip, we score every 10th frame
for a given event and, then, use the maximum frame scores as
a confidence value for a video clip and event class.

3http://labrosa.ee.columbia.edu/matlab/rastamat/

http://lear.inrialpes.fr/people/wang/dense_trajectories
http://labrosa.ee.columbia.edu/matlab/rastamat/


Event min NDC rank
(1) v + a + i (2) v + a (3) v (4) i

E006 birthday party 0.8702 0.7165 0.7533 1.0004 8
E007 changing a vehicle tire 0.7825 0.7500 0.7323 0.9240 8
E008 flash mob gathering 0.4332 0.4337 0.4809 0.5858 7
E009 getting a vehicle unstuck 0.6366 0.5650 0.6077 0.9056 8
E010 grooming an animal 0.8058 0.8101 0.8039 0.9911 8
E011 making a sandwich 0.9154 0.8892 0.8572 0.9317 10
E012 parade 0.5948 0.5514 0.5950 0.9263 6
E013 parkour 0.4489 0.4475 0.4789 0.9033 6
E014 repairing an appliance 0.6711 0.5099 0.5094 0.8396 8
E015 working on a sewing project 0.8304 0.8027 0.8105 0.9795 10

TABLE III
RESULTS FOR MED: NORMALIZED DETECTION COST (LOWER IS BETTER) AND RANK OF OUR BEST RUN WITH RESP. TO PARTICIPANTS (A TOTAL OF 19).

D. Fusion of multi-modal classifiers
The classifiers are combined with a weighted sum of the

probabilities obtained by applying a sigmoid function to the
scores. The combination of the video, audio and still image
modalities is given by:

P (vi/ek) = αPvid(vi/ek) + βPaud(vi/ek) + γPim(vi/ek)
(3)

where vi is a video, ek is an event and α, β, γ ∈ R are the
weights. These weights are learned on a validation set of 2400
videos to maximize the classification performance evaluated
by the mean Average Precision (mAP). For our dataset we
obtained α = 0.63, β = 0.27, γ = 0.1. We can observe
that most weight is given to the motion information. If only
motion and audio information is used, we apply the same ratio
between video and audio modalities, i.e., α = 0.7, β = 0.3. In
case of a video with no audio signal or with a weak energy
one, the final probability ignores it and rebalances the weights.
The submitted threshold was estimated on the validation set to
produce an operating point with a 1:12.5 false alarm to miss
ratio.

E. Analysis of results
We submitted four runs to the official evaluation. They

correspond to different combinations of video, audio and still
image modalities:

1) 3CHAN: a combination of video, audio and still image
2) MBH: a combination of video and audio
3) NOAUDIO: video only
4) STILL: still image only

Table III summarizes the results. Overall our runs rank about
8th out of 19 participants. We can observe that the combination
of video and audio features performs best. The addition of
audio improves the performance over video alone six times
out of ten. It does not help or slightly degrade the results
if the audio information is not significant for the event. Still
images do not add significant information. This is probably
due to our relatively weak still image classifier. It is clearly
not optimal, as there are arbitrary frames in the positive video
examples. Future work will include the selection of keyframes
when training the classifier.
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