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Abstract

This paper proposes the event detection system for
TRECVid 2011 surveillance event detection. ”CellToEar”,
"Embrace”, “ObjectPut”, “PeopleMeet”, ”PeopleSplit-
Up”, ”PersonRuns” and ”Pointing” are the 7 events we
detect in our system. Firstly, interest points are detected
in the Local spatial and temporal regions, and local feature
is described with SFA (slow feature analysis) method. We
apply lib-SVM to classify the 7 events and the 7 scores cor-
responding to foregoing events are the original result of the
local region. Post-processing is used to generate the global
result and reduce the false alarm.

1. Introduction

Activity recognition in real world datasets is always a
challenge work in compute vision. TRECVid dataset is
much more difficult because of its complexity of scenes.
More occlusion and complex foreground are obvious

We detect all the seven events in the TRECVid dataset.
The flowchart of our system is shown in figure 1. We ulti-
mate all the videos of tv2008 except the test five ones for
dry run and videos of scene 4 as training data. In the train-
ing step, we firstly labeled all the spatial locations of the
ground truth in the training data which only have the tem-
poral information (starting and ending frames). Then we get
a local video volume of every event manually in the videos.
Taking one local volume in one video for instance, we de-
tect the STIP (spatial and temporal interest points) [2] in
the local volume and get several cuboids around different
interest points. Slow Feature Analysis is used in the system
to extract slow feature functions of different actions. SFA
[6] has been successfully used in the visual receptive field-
s of the cortical neurons successfully because of its ability
of extracting slowly varying features from a quickly vary-
ing input signal. We apply Accumulated Squared Derivative
(ASD) feature [6], which can encode the statistical distribu-
tion of slow features of an action sequence, to represent the
action sequence. In the testing step, we get the local volume
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Figure 1. Flowchart of our system.

with multi-scale sliding window. The scale of windows are
adapt to the complexity of the foreground. The method of
feature extracting is the same with the foregoing. SVM [1]
is used to classify the seven categories. We obtain the score
vector of 7actions from the local volume. After recording
all of the score vector corresponding to the local volumes
in the global volume which is the original video clip from
starting frame to ending frame. We define the maximum
score of all the local volumes of one event to be the glob-
al score of the event. Non-maximum Suppression (NMS)
and probability map, which is similar to the work of Yang
et al. [5], are used as past-process after we get all the global
scores in the whole video.

The rest of this paper is organized as follows. We in-
troduce the detail of our method in the system in Section
2. Experimental results and discussion is presented in Sec-
tion 3. We conclude our work and give our suggestion on
TRECVid SED in Section 4.

2. Our Method

Out approach includes two parts, i.e., feature extraction
and action classification. The core of our work is feature
extraction, and it is presented in part one. The other part
briefly shows action classification.

2.1. Label and Slice Window

The only information of TRECVid dataset, the starting
and ending frames of different events, is not enough, be-
cause we should know the location of the events in the com-



Figure 2. The results show of sliding windows.

plex foreground. So we label the spatial location of every
event with a rectangular box, and a volume is obtained with
the temporal information. This volume is the unit of train-
ing data applied in our training step.

To correspond to the local volume, we use sliding win-
dow method to get the local volume in test data. Both tem-
poral slide and spatial slide are used in our system. The
strategy of the slice window is that: 1) we detect the local
event with spatial sliding windows in 50 frames. The spatial
sliding window size is 100 by 100. The overlap of two adja-
cent windows is 20. We will skip the following steps when
the number of the interest points is less than N~. If the
number is bigger than N T, we will do the sub slide in the
100 by 100 rectangular box with a 50 by 50 window. The
overlap is 10. So we can use different scale self-adaptively.
Taking into account the computational complexity, we just
use two scales. The sliding windows are shown in figure 2.

2.1.1 STIP

Dollar et all.’s work is used in our system because of its ro-
bustness to pose, image clutter, occlusion and complex fore-
ground which characters TRECVid dataset has. The method
is briefly reviewed here.The response function is

R=(I%g%he)?+ (I%g*hoq)? (1)

Where I is the local volume and g(z, y; o is 2-D Gaussian
smoothing kernel, applied only along the spatial dimen-
sions, hey(t;7,w) = — cos(2mtw)e /™ hoa(t;T,w) =
— sin(27rt(,u)e*t2‘/72 and omega = 4/tau. Cuboids are
generated around interesting points. A cuboid has the size
of 131313 taking corresponding point as the center.

2.1.2 SFA and its discriminative derivation

As proposed in [6], SFA has been used for human ac-
tion recognition. Mathematically, SFA is defined as fol-
lows [4]: Given an I-dimensional input signal x(t) =
[21(t), ...,z (t)]T with t € [to,t1] indicating time, S-
FA finds out a set of input-output functions g(z) =
[g1 (), ..., g7 (x)]T, so that the J-dimensional output signal
y(t) = [y1(t), ., ys (O] with y;(t) = g;(x(t)) varies as
slow as possible, i.e., for each j € [1, ..., J],

Aj = Aly;) = (43), isminimal, )

subject to
(yj), = 0 zeromean; 3)
<yj2>t = 1 unitvariance; “4)

andVj' < j: (yjy;), = 0 decrrelation (5)

where g denotes the operator of computing the first order
derivative of y and (y;), is the mean of signal y over time.
Equation (2) is the primary objective of minimizing the tem-
poral variation of the output signal, where the temporal vari-
ation is measured by the mean of the squared first order
derivative. Constraint (3) presents for convenience only, so
that Constraint (4) and (5) take a simple form. Constrain-
t (4) means that the transformed signal should carry some
information and avoid the trivial solution y;(t) = const.
Constraint (5) ensures that different output components car-
ry different types of information and it also induces an or-
der, the first output signal being the slowest one, the second
being the second slowest, etc.

If the transformation is linear, i.e., g;(X) = ijx, where-
in x is input and w; is weight, the solution of SFA is equiv-
alent to the generalized eigenvalue problem:

AW = BWA (6)

Where A = <XXT
matrix of the temporefl first order derivative of the input vec-
tor, B = <XXT> . is the expectation of the covariance matrix
of the input vector,A is a diagonal matrix of the generalized
eigenvalues and W is the corresponding generalized eigen-
vectors. Furthermore, the order of slow features is deter-
mined by eigenvalues and where the most slowly varying
signal has the lowest index.

The nonlinear transformation can be deemed as the lin-
ear transformation in a nonlinear expansion space. The non-
linear expansion function h(x) is defined by

h(x) :=[h1(x), ..., has (%)) )

Afterward, SFA can be performed in the expansion space
to obtain nonlinear slow feature functions.

In summary, slow feature functions can be obtained by
the following two steps:

> is the expectation of the covariance



e Nonlinear expansion Apply a nonlinear function h(x)
to expand the original signal, and centralize h(x).

z:=h(x) — hg (8)

where hy = (h(x)),. The centralization makes Con-
straint (3) valid. In this paper, we use the quadratic ex-
pansion, i.e., h(x) = [xq, ...,

X1, X1X1, X1X2, ’“7XIXI}~
e Solve the generalized eigenvalue problem
AW = BW A ©))
Where A = <ZZT> and B = <zzT>t.
t

Assume the dimensionalities of matrix A and B are M,
the first K eigenvectors wy, ..., wx (K < M) associated

with the smallest eigenvalues A\; < As... < Ak are the
nonlinear slow feature functions gy (x), ..., g (X):
9;(x) = wj (h(x) — ho), (10)

which satisfies Constraints (3) - (5) and minimizes the
objective function (2). Here, the input-output function com-
putes the output signal instantaneously. Therefore, slow
variation of the output signal cannot be achieved by using
the temporal low-pass filter, but must be obtained by ex-
tracting aspects of the input signal that are inherently slow
and useful for a higher level representation.

To properly introduce the supervised information to the
SFA learning, we propose the discriminative SFA (D-SFA).
D-SFA is inspired by discriminative sparse coding [3],
where a number of sets of discriminative dictionaries are
learnt, and each set of dictionaries are used to reconstruct
a specific image class. Accordingly, D-SFA learns a num-
ber of sets of functions and each set of functions are used to
slowdown a specific action class.

Given C classes of I-dims input signals {x.(t) =
[Zc1(t),..,xzer(t)]lc € {1,..,C}}, for the c-th class,
D-SFA finds a set of J-dims functions g.(x) =
[9e1(X), - ges(0))7 to minimize  A(gej(xc) — 7 *
A(gej(xcr)). Therefore each learnt function makes the
intra-class signals x.(t) (t) vary slowly, but makes the inter-
class signals x.(t) that are different from class c¢ vary
quickly. Assume g.(x) = [gc1(X), ..., ges(x)]T are linear
functions, for each j € {1, ..., J}, D-SFA minimizes

A(gcg(xc)) v * A(gej(x
9es{x]”), —w*< ), an

= wCT][<xch> — v * <x(,/x > Jwe;
subject to:

(9ej(Xeuer)) = 0 zeromean; (12)

<[gcj (xcucl)]2> = 1 unitvariance; (13)

Vi' < J: (gejr (Xeuer ) gej (Xeuer ), = 0 decorrelation,
(14)
where w,; is the weight vector of the j-th slow feature
function for the class ¢ and 7 is the tradeoff parameter. D-
SFA can be written as a generalized eigenvalue problem

EW = BWA, (15)

[<xcxf>t s <xxT>t] B =
<xcUC/x6UC/T> . is a diagonal matrix of the generalized
eigenvalues and W is the corresponding generalized eigen-
vectors. To obtain nonlinear slow feature functions, we can
perform the nonlinear expansion before the D-SFA learn-
ing.

2.2. ASD Feature

In the SFA learning, cuboids are derived from d succes-
sive frames. Thus we compute a statistical feature from d
frames to represent an action sequence. SFA minimizes the
average squared derivative, so the fitting degree of a cuboid
to a certain slow feature function can be measured by the
squared derivative of the transformed cuboid. If the value is
small, the cuboid fits the slow feature function. Otherwise,
the cuboid does not fit the function. For cuboid C; and slow
function F;, the squared derivative v; ; is

where E =

d—At
1
Vi T U At Y [Citt+ 1) ® Fy = Ci(t) @ Fy),

t=1
(16)
where ® is the transformation operation.
We then accumulated the squared derivatives over al-
1 cuboids to form the ASD feature.

N
fasp =Y _Vi, (17)

where N is the total number of cuboids in current snip-
pet, and V; = (v;1,v; 2, ...,vi,K>T. Since the number of
cuboids detected in a snippet may differ from that in anoth-
er snippet, it is necessary to normalize the feature vector.
Here, we perform the L1 normalization.

2.3. Classification

As the SFA function is learned separately for the 4
scenes, we learn 7*4 classifiers for every event in every
scene. We obtaining the score vector of 7actions from
the local volume by using the corresponding classifiers in
the corresponding scene, and the location of windows are
recorded for post-process.



Figure 3. (a) The frames of 4 different scenes; (b) corresponding probability maps of the 4 scenes of (a).

Event
CellToEar | Embrace | ObjectPut | PeopleMeet | PeopleSplitUp | PersonRuns | Pointing
scene
1 0.5625 0.1055 09114 0.5125 0.6773 0.2925 0.9352
2 0.9418 0.6538 0.9767 0.4210 0.2274 0.3175 0.9601
3 0.9850 0.8749 0.9328 0.9417 0.2050 0.8172 0.8553
5 0.9273 0.9431 0.8625 0.5209 0.2980 0.3524 0.9880

Table 1. Min DCR we test for different scenes in the data which are used in dry run.

2.4. Post-process

As false alarms are bound to happen because one event
can span across several clips, post-process is necessary. We
use prior knowledge and NMS here to reduce false alarms.

2.4.1 Prior Knowledge

We build a probability map for every event in every scene.
The maps are generated from the ground truth which we
labeled manually and shown in figure 3. We process the
score using

scorey = a*xw + (1 — ) * scoreoriginal (18)
Where w is obtained by using the bounding box of the
5COT€original- We set the average pixel value of the cor-

responding region in the map to be w. « is a parameter to
balance w and scoreoriginal-

242 NMS

score,, is the local score of one slice window. We define the
maximum local score (scoreqriginat) as the global score of
the video clip, then Non-maximum Suppression (NMS) is
utilize to reduce the false alarms. Our strategy is:

e step 1: finding the maximum score,, of one event in
one video sequence and setting the scores, with the dis-
tance of less than R, to be zeros. R is decided by the
average length of the time of the event in the ground
truth of the training data.

e step 2: finding the next maximum score excluding the
previous one;

e step 3: repeating step 2 if next maximum score exists
and is greater than 0.



Event CellToEar | Embrace | ObjectPut | PeopleMeet | PeopleSplitUp | PersonRuns | Pointing
Min DCR 1.0003 1.0003 0.9994 0.9997 0.9835 0.9979 1.0003
Best Min DCR 1.0003 0.8658 0.9983 0.9724 0.8809 0.8372 0.973

Table 2. Min DCR of the formal evaluation result of our baseline system in TRECVid .

Event
CellToEar | Embrace | ObjectPut | PeopleMeet | PeopleSplitUp | PersonRuns | Pointing
scene
1 1.0016 1.0016 1.0016 1.0016 1.0016 1.0016 1.0829
2 1.0016 1.0082 1.0016 0.9959 0.9360 1.0016 1.0016
3 1.0033 1.0016 0.9940 1.0016 0.9752 1.0016 1.1017
5 1.0508 1.0016 1.0016 1.0016 1.0016 1.0016 1.0016

Table 3. Min DCR of the formal evaluation result for different scenes.

3. Experimental Analysis

The SFA functions and SVM models are trained
in the training data excluding the 4 videos which
are mentioned in the Experiment Control File: exp-
t-2009_retroED_DEVO09_ENG_s - camera_NIST_2.xml in
dry run test, R (mentioned in 2.4.2) is decided by training
data, and o (mentioned in 4.11)) of baseline system is set by
test them in the 4 videos for dry run testing. We use Min D-
CR to reflect the performance of the system. The result we
test in the foregoing data is showing in Table 1 when « is e-
qual to 0, which means we do’t use the prior knowledge. So
the functions, models and R are all decided by training data
excluding the 4 videos in dry run test. Appropriate o can
contribute a small improvement for the system. The result
looks perfect in individual scene. It seems that our system
can detect the event well after learning the SFA function for
every event in event scene, and prior knowledge and NMS
really reduce the false alarms of the system.

Table 2 shows the formal evaluation result of our base-
line system in TRECVid 2011 SED Evaluation data. The
system seems not good enough from the result in Table
2, because every SFA function and every SVM model are
trained separately in different scenes. They do not fit every
scene, so the Min Dec. Threshes are not the same for one
event in different scenes.

The results generated separately in different scenes are
also provided in Table 3. In fact, they are too bad to our
expectations. We got a perfect result without updating the
parameters in the test data of dry run.

As plenty of time is needed to run the system in the for-
mal evaluation data, we cannot adjust our system effective-

ly.

4. Conclusions

We propose the event detection system for TRECVid
2011 surveillance event detection. This system utilizes s-
liding windows to detect the local regions and learn SFA

function for ASD feature. NMS and prior knowledge are
proposed as post-processing to reduce the false alarms. To
be honest, our system is slow because of the dense sliding
windows, so it need to be optimized.
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