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ABSTRACT

We participated in two tasks: semantic indexing (SIN) and
instance search (INS).

SIN runs

We submitted 4 light runs, using 4 MPEG-7 visual features
and different kernels (on single frames and sequences). Runs
use a different subsampled set of training data.
• L A JRS-VUT1 3: 500 training samples/concept, single

frames
• L A JRS-VUT3 1: 500 training samples/concept, se-

quence of vectors
• L A JRS-VUT4 4: 1000 training samples/concept, sin-

gle frames
• L A JRS-VUT5 2: 1000 training samples/concept, sin-

gle frames, post-processing using semantic relations
Increasing the number of training samples increases the re-

sults only moderately, post-processing using semantic relations
does not improve the results.

INS runs

We submitted 4 runs, using different (combinations) of
features:
• F X NO JRS 4: Baseline run: SIFT only
• F X NO JRS 3: Fusion of all features: the best general

configuration of each feature is used for all queries
• F X NO JRS 2: Best single feature for each query using

auto-selection
• F X NO JRS 1: Fusion of best feature configurations

for each query using auto-selection
The SIFT only run outperformes the fused runs. Fusion

includes more relevant clips, but the SIFT only run has more
top-ranked relevant clips.

I. SEMANTIC INDEXING

For the semantic indexing task we use a set of low-
level features extracted from keyframes and train a classifier

for each concept using SVMs. In the following, we briefly
describe the features used, and the kernels we used in the
experiments. We then discuss our results.

A. Features

1) MPEG-7: The following MPEG-7 [1] image features
were extracted globally:

Color Layout describes the spatial distribution of colors.
This feature is computed by clustering the image into 8x8
blocks and deriving the average value for each block. After
computation of DCT and encoding, a set of low frequency
DCT components is selected (6 for the Y, 3 for the Cb and
Cr plane).

Dominant Color consists of a small number of represen-
tative colors, the fraction of the image represented by each
color cluster and its variance. We use three dominant colors
extracted by mean shift color clustering [2].

Color Structure captures both, color content and information
about the spatial arrangement of the colors. Specifically, we
compute a 32-bin histogram that counts the number of times
a color is present in an 8x8 windowed neighborhood, as this
window progresses over the image rows and columns.

EdgeHistogram represents the spatial distribution of five
types of edges, namely four directional edges and one non-
directional edge. We use a global histogram generated directly
from the local edge histograms of 4× 4 sub-images.

2) Bag of features (BoF): About 300 densely sampled im-
age regions from 3 different scales are selected per keyframe.
A 128 dimensional SIFT descriptor (4 × 4 subregions, 8
directions for orientation histograms) is extracted for each of
these regions without computation of a dominant orientation.
These SIFT descriptors are robust to certain kind of scale
changes but the robustness to orientation changes is poor.
We high cap and normalize the features as described in [3].
We extract MPEG-7 ColorLayout features from these regions.
ColorLayout features [4] present the spatial distribution of
colors in a very compact form. These features cluster an image
or image region into sub-regions of 8× 8 pixels and compute



the average pixel value for each of them to select the first low
frequency coefficients of a discrete cosine transform.

Higher-level features are then generated by the popular bag-
of-feature approach (BoF) where the SIFT and ColorLayout
features are mapped to codewords. These codewords are
generated in an off-line step using the k-means algorithm on
about 100,000 features from randomly selected Flickr images.
We use codebooks with 100 codewords which leads to two
100 dimensional BoF features for each keyframe. Each entry
in one of these BoF features states the number of times a
specific codeword was detected in a keyframe. The mapping
between SIFT and ColorLayout features from a keyframe
and their codewords is identified by nearest neighbor search
with Euclidean distance. Beside global BoFs of the entire
keyframes, we generated further versions where the keyframes
are split into 2×2, 1×3, 3×1, and 3×3 regions in horizontal
and vertical direction. A own 100 dimensional BoF feature is
then generated for each partition and they are concatenated to
300, 400, and 900 dimensional features.

B. Kernels

Kernel methods, most notably Support Vector Machines
(SVMs), have been widely applied to classification problems,
also due to the availability of toolkits such as LibSVM [5].
SVM based classifiers are also commonly used for concept
classification based on visual features. If we look at the
TRECVID [6] 2009 High-Level Feature Extraction (HLFE)
Task, all but 3 of the 42 submitters report the use of an SVM
variant in some part of their approach (e.g. for classification
based on low-level features or for fusion) [7]. Most of the
groups use some low-level features which require other dis-
tances than the Euclidean distance between feature vectors,
e.g. some of the MPEG-7 visual descriptors [4] or variants of
histograms. But only about half of these groups mention the
use of specific kernels for these features, while most seem to
use the commonly applied radial basis function (RBF) kernel.

Despite the wide use of MPEG-7 visual features in the
research community there is remarkably little work on defin-
ing kernels that appropriately model the proposed distance
functions. A kernel combining different MPEG-7 features
and considering the appropriate distance functions has been
proposed in [8], [9] and has shown to perform better on a
small still image data set.

We thus define a kernel that combines appropriate kernels
for the different features. The kernel is defined as

κcombined(x, x′) = κmpeg7(x, x′)κbof (x, x′), (1)

where κmpeg7 is the kernel for MPEG-7 features described
in [10]:

κmpeg7(x, x′) =
∏

i∈{cld,dcd,csd,ehd}

exp(−w̄iκi(x, x
′)). (2)

The feature weights wi are defined as

wi(T ) =
var({di(x−i , y

−
i )|∀x−, y− ∈ T−})

var({di(x+i , y
+
i )|∀x+, y+ ∈ T+})

, (3)

where x+ (x−) denotes a positive (negative) sample in the
training set T and di(·) is the distance function for feature i.
The weights are thus defined as the ratio of the variances of
the feature distances among the negative and positive samples.
The weights for the individual features are then normalized
to obtain w̄i = wi∑

j∈{cld,dcd,csd,ehd}
wj

. In contrast to [8] we

calculate the weights in advance and not iteratively during
training.
κbof is a histogram intersection kernel

κbof (x, x′) =

n∑
j=1

min(xi, x
′
i), (4)

with n being the size of the BoF vocabulary.
As an alternative, we use a kernel that supports a sequence

of such feature vectors, i.e. uses the features of multiple
key frames per shot together. The individual feature vectors
x1, . . . , xn of a shot are concatenated to a sequence feature
vector X .

A kernel based on the longest common subsequence (LCSS)
algorithm has been proposed in [10]. This kernel already
allows plugging in any kernel for measuring the distance be-
tween the feature vectors of the samples of the two sequences,
and includes the similarities in the result of the kernel. The
kernel uses a recursive definition of LCSS and a threshold θ to
decide if two feature vectors are considered as matching. The
kernel function to determine the length of the single longest
common subsequence is given as κLCSS = LCSS(X,X ′).
Similarity weighting can be achieved by performing back-
tracking of the longest sequence, summing the values of
κcombined(·) of the matches and normalizing.

In [10] the authors propose to consider all subsequences
ending in the last element of either of the two sequences:

κALCSS =
∑1

i=m LCSS((x1, . . . , xi), X
′)+∑1

j=n−1 LCSS(X, (x′1, . . . , x
′
j)).

(5)

This requires backtracking of all sequences ending in the
last element of either X or X ′, i.e., O(n2) backtracking
steps. The underlying distance function of this kernel can also
include constraints for the minimum lengths of subsequences
considered matching and the maximum gap between two
matching elements in a sequence. However, [10] does not
use these constraints. The result of the kernel function is
normalized to account for sequences of different lengths.

C. Using Semantic Relations

We have made use of the semantic relations between the
concepts as a post-processing step. Only 37 implies relations
apply to the concepts the light task. The following rules are
applied to the set of predictions for the concepts for each
shot (the probabilities from the prediction step are assumed to



be normalized s.t. the decision boundary for concept A is at
p(A) = 0.5).

First, possible transitive relations are resolved, and added
to the set of relations to be processed. Then, each relation
between concepts A and B is processed depending on the
predictions for these concepts for a shot:

a) Consistent prediction for concepts A and B: p(B) =
max(min(p(B) + 0.5(p(A)− 0.5), 1.0), 0.0)

b) Predictions of A and B are contradicting the relation:
We implemented three options: (i) optimizing recall, i.e.
enforcing the relation, (ii) optimizing precision, i.e. removing
the prediction that corresponds to the condition in the relation,
and (iii) deciding based on the relative margin of the two
predictions to the decision boundary.

There are cases where two relations have the same target,
so that potentially concurrent updates could happen. We im-
plemented different strategies to combine these updates as
their minimum, maximum, mean or median. However, no
differences in terms of the results have been observed.

D. Results

We varied the following parameters in our runs:
• training set: TV10 (IACC.A only) or TV11 (IACC.A and

IACC.1)
• subsample of training set: random sample of the training

set with at most k samples per concept
• features: MPEG-7 features only or MPEG-7 features and

global BoF
• kernel: single feature vector or sequence of feature vec-

tors per shot
• semantic relations: post-process results using semantic

relations
Table I shows an overview of the official and additional SIN

runs and their parameters, as well as the mean infAP over all
concepts of the light task.

Note that the result for the sequence kernel are incorrect
due to an error in the test data file. This will be corrected in
the final version of the paper.

The use of the global BoF features in addition did not
improve the results (in contrast to TV10 experiments). This
will be further investigated, as well as the use of block-based
BoF features.

E. Conclusion

Training the classifier on the same number of samples of
the IACC.A data set only yields slightly worse results than
sampling from both IACC.A and IACC.1.

There is an improvement of the results with increasing
number of samples from the training set. However, the im-
provement is only moderate.

The use of semantic relations did not improve the results.
Some concepts were unaffected, for others the results got
worse. It seems that the probabilities generated by the SVM
are not appropriate for using them to compare/adjust reliabil-
ities of the different concepts in a post-processing step.

II. INSTANCE SEARCH

Our system for the instance search task is structured as
follows. We use four different subsystems, each performing
the search task for a certain type of feature with different con-
figurations. A couple of different dissimilarity measures [11]
(Canberra distance, Correlation distance, Cosine distance, Jef-
frey divergence, Squared distance, PsiSquare statistics, and the
Minkowski family distances: Manhattan distance, Euclidian
distance, and Fractional distance) are used in the matching
step for each feature. We have used the entire query images
for feature extraction as well as the cropped objects without
background. This leads to a total number of 18 different
configurations per feature type. Each subsystem is queried
independently with each sample and returns a ranked result
list with a similarity value for each result. We thus have for
each query number of samples × number of subsystems results.
Different fusion methods were used to combine the results
of one module (that stem from different images of the same
query) and to combine the results of different modules in order
to obtain the final ranked result list.

All features have been extracted from a set of clustered key
frames per clip. This clustering was performed as follows.
First, densely sampled key frames have been extracted using
every tenth frame. Color bars, black and white frames have
been detected and omitted by testing the variances of the pixel
columns. Then we extracted global SIFT features from each of
these key frames and matched them against each other using
Euclidian distance. Key frames that exceed an initial threshold
of 0.5 against all key frames of the existing clusters are used to
generate a new cluster. After all key frames are processed the
number of clusters is evaluated and if only one cluster exists
or if the number of clusters is higher than six, new clusters
are generated with an adaptive threshold (multiplied by 0.95
or 1.05). A total number of 69,591 key frames is generated
from all clips.

In the following, we describe the subsystems for the dif-
ferent features and the fusion methods. We then discuss the
results.

A. Subsystems

1) Gabor Face Recognition: We perform face detection
using the well-known Viola-Jones AdaBoost approach [12] on
three scaled versions of each keyframe with the longer image
side sizes of 160, 320, and 640 pixels. Polygon intersection
ensures that each face region is not used from multiple scales.
After this, every detected face region is processed to generate
a 10,240 dimensional feature using Gabor wavelets.

The Gabor features of all trainings key frames are generated
and stored in an off-line step. During instance search, a linear
k-nearest neighbor search [13] is performed for each detected
face in a query image to identify the best matches in the
database using the dissimilarity measures mentioned above.
For query images where no face was detected, an empty result
lists is generated. Our implementation is done in C++ using the
CORI recognition infrastructure [14], the OpenCV library [15]



id training set no. samples features kernel relations infAP
1 TV11 500 MPEG-7 single no 0.0102
2 TV10 500 MPEG-7 single no 0.0079
3 TV11 500 MPEG-7 sequence no 0.0040
4 TV11 1000 MPEG-7 single no 0.0105
5 TV11 1000 MPEG-7 single yes, based on run 4 (relative) 0.0043
5a TV11 1000 MPEG-7 single yes, based on run 4 (precision) 0.0040
5b TV11 1000 MPEG-7 single yes, based on run 4 (recall) 0.0040
5e TV11 1000 MPEG-7 single yes, based on run 6 (relative) 0.0047
6 TV11 5000 MPEG-7 single no 0.0118
7 TV11 500 MPEG-7, global BoF single no 0.0046

TABLE I
OVERVIEW OF SIN RUNS (1,3,4,5 ARE THE OFFICIAL RUNS).

for face detection, and FFTW library [16] for Gabor feature
generation.

2) BoF Matching: BoF Features are generated in the same
way as described in the SIN section I-A2 using densely sam-
pled regions from three different scales, SIFT and ColorLayout
features, and codebooks with 100 clusters that are generated
using the k-means algorithm. In an offline process, global
BoFs are then generated for both feature types from every
clustered key frame. BoF matching is then performed with k-
NN search of the BoFs from each query image against the
BoFs from the clustered key frames. In addition to the above
mentioned dissimilarity measures, we compute the histogram
intersection between a query BoF Q and a clustered key frame
BoF T:

d =

i<cbSize∑
i=0

max (Q (i) , T (i))− T (i) (6)

where i is the current codebook index. This histogram inter-
section was used because the (cropped) query images contain
only the query object while additional background objects can
be shown in the clustered key frames.

3) Mean Shift segments: A Mean Shift segmentation was
performed to generate about 10 segments per clustered key
frame and query image. We use the Mean Shift implementation
proposed in [17], which works on a quantized color space. The
resulting region of the segmentation are merged as follows.
Starting from the smallest region, we merge a region with its
largest neighbor, until either the number of regions is below
10 or the size of the smallest region’s width, height or area is
above 0.02× the image width, height or area. One SIFT feature
and one ColorLayout feature have been extracted from each
segment and k-NN search was used again for matching.

4) SIFT: SIFT [3] is used as another subsystem in the
instance search task. For each query versus database image
match, SIFT keypoints and its corresponding descriptors are
extracted as proposed in [3]. The descriptors are computed
using 4×4 cells and 8 bins for histogram of oriented gradients.
Since some queries provide only few keypoints reside in
the object mask, we extent the query keypoint set by such
keypoints extracted from the neighboring regions around. In
particular, if the object mask covers less than 10 keypoints,
we fill up the set with keypoints next to the mask boundary.

A special treatment to find objects of the type ’person’ is that
we use the entire SIFT keypoints including those extracted
from the background. The reason is that we do not expect
that specific persons can be recognized using SIFT. But it
is possible to find the target person in the same location or
scene. For the search in the database image pool, each query
descriptor is compared with all descriptors of each database
image. Then, the top 5 matches are kept for further assessment.
The score of a SIFT descriptor match is composed of two
criteria: the actual descriptor match from query to database
image and the consistency of their neighboring keypoints. For
that, the coordinates of (at most 10) neighboring keypoints are
projected from query image to database image according to
the orientation and the scales of both center descriptors. Then
the keypoints in database image next to these coordinates are
taken into account. That is, the histogram distance between
the center keypoints and their neighboring keypoint matches
are used in the following score function

sc(dist) = −
∑
i

log (disti + 1) /maxDist, (7)

where maxDist = 106 and matches with distances greater
than maxDist are discarded. Note that the score function
prefers single good match over several moderate matches.
Finally, the maximum of the scores is used as rank in the
result list.

B. Fusion methods

As mentioned above, each INS module generates one output
list for each sample image. Thus, multiple output lists exist for
each query and module that have to combined first. Secondly,
we had to to merge the output lists of different modules for
combined runs, as described in the next section. For the sake
of simplicity, we used following fusion strategy for both tasks.

ratingi = besti ∗#lists ∗ #entriesi
#possibleEntries

− besti (8)

Thereby, we compute a ranking value for each object
instance i contained in the results lists based on the best
position of one of its samples. Depending on the recognition
approach, multiple entries of the same instance in one result
list are possible or not. After this, we order all instances again



according this ranking value. The intuition behind this fusion
is to order the instances similar to a zip fastener starting from
their best entries. The order of entries with the same best value
(originating from different result lists) is thereby determined
from the number of entries.

C. Runs

Following four different runs have been performed: (1) a
baseline run with SIFT descriptors only, (2) fusion of all
modules, the best general configuration of each module is
used for all queries, (3) best single feature for each query, (4)
fusion of best module configurations for each query. The best
features of run three and four are thereby calculated with the
auto-selection approach of [18]. In this process, we compared
the results of different sample images of the same query
against each other using all sub-modules, extraction types,
and dissimilarity measure. This auto-selection identifies the
position of the other sample images of the same query for each
configuration and selects the one(s) where the sample images
are ranked best. We suppose that recognition approaches that
perform well to match the sample images of the same query
against each other, are well suited to retrieve further instances
of the same object.

D. Results

The best mean precision (0.221) and mean average precision
(0.170) was achieved by the first run with SIFT descriptors
only. These results are above the median for almost all objects
but below the top results. However, the results between the
four runs contains some surprises. The runs where only one
visual feature was used (run one and three) returned 611 and
613 relevant shots from a total amount of 1830. However,
while the first run achieved the highest mean precision, the
opposite is true for run three while run. The fused runs (run
two and four) returned more relevant shots (847 and 783)
but their mean precision and mean average precision values
are significantly worse that the baseline runs. According to
the ’precision at n shots’ statistics, these runs outperform the
baseline run between 200 and 500 shots while a much lower
precision is achieved in the first 30 shots. The run times are
similarly high in all queries and runs where SIFT features are
involved (between 100 and 300 minutes) while analysis times
of a few minutes or even seconds are measured for all other
queries.

It must be noted that while the results of the fused runs are
rather balanced for the different types of queries (at least for
object and location), the SIFT only run scores significantly
better for locations (0.3709) than for the other categories.

E. Conclusion

As in our TV10 experiments the SIFT only run outper-
formed the different fusion methods. The fused runs return
more relevant results in total, however, the SIFT only run has
more relevant results on the lower ranks. This property makes
it probably more suitable for practical retrieval problems.
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