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Abstract—This notebook paper summarizes the algorithms
behind Telefonica Research participation in the NIST-TRECVID
2011 evaluation on the Video Copy Detection task. This year we
have focused on 1) Improving the image-based matching system
to better process video files; 2) implemented and tested a novel
audio local fingerprint; and 3) improved the multimodality fusion
algorithm from last year.

For this year we have submitted 4 runs in total, whose main
characteristics are described below:

• TID.m.[BALANCED/NOFA].multimodal: These correspond
to our main submissions, both for the no false alarm and
balanced profiles. They are based on the fusion between the
local audio and local video monomodal systems.

• TID.m.BALANCED.mask: This submission is based on the
monomodal audio-based system, which this year uses a novel
audio fingerprint called MASK.

• TID.m.BALANCED.joint: This submission is the fusion (at
decision level) from our two monomodal system outputs with
the output from the PRISMA group video-only system. This
submission resulted in our best results for the evaluation.

Over all, we are very pleased with the results for this year’s
evaluation. On the one hand, our video-based system is reaching
maturity, using local image descriptors (DART) developed by
Telefonica. On the other hand, we have developed and applied
to the evaluation novel audio local features called MASK. Even
though we did not spend much time tuning the new feature
to the Trecvid copy detection datasets, we are very please with
its results. In addition, we have improved the fusion algorithm
from last year and have shown that it does work well to fuse
results from multiple outputs, improving on the results obtained
by either one of our systems and those from the PRISMA
submission.

I. INTRODUCTION

The final goal in the video copy detection task, within
the NIST-TRECVID evaluation campaign [1], is to locate
segments within given query videos that occur, with possible
transformations, in a given reference video collection. Applied
transformations can be inherent to the general video creation
process (like encoding artifacts, video quality changing, etc.)
or more complex transformations, which manipulate video
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content or its orientation (e.g., flipping, frame dropping, crop-
ping, insertion of text/patterns like fixed banners or logos, etc.).
In the audio track the possible transformations go from mild
(e.g. MP3 transcoding) to very severe (overlapping speech plus
various companding effects.).

Video copy detection can play an essential role in many
real-live applications, for example search result redundancy
removal, copyright control, business intelligence, advertise-
ment tracking, law enforcement investigations, etc. In addition
to the conventional method of watermarking, content-based
copy detection is considered an alternative solution for video
copy detection. In the watermarking approach irreversible
information (i.e. watermarks) is embedded in the original
video stream and is used to determine if a video has been
copied from another video. One limitation of this approach
is that the distributed videos should have been watermarked
in the source, which adds an extra post-processing step for
production companies or individuals, which not always can
be done, as many times we do not have access to the source
video. On the other hand, through content-based approaches,
a set of content-based features are extracted from the video
and are utilized to locate copied segments of the query video
in a reference video dataset. It is said that in the content-
based approach the content itself acts as the watermark. This
approach is still a challenging topic because of various types
of transformations applied and computational issues, although
research on the area is progressing steadily.

In general, the main challenges in video copy detection are:
1) scalability to deal with growing amounts of multimedia
data; 2) speed of new media indexing into the reference
database; 3) speed of retrieval of plausible copies, given a
query video; 4) effective usage of the audio+video information
available; and 5) effectiveness on finding the correct duplicates
while reducing the number of false alarms.

In NIST-TRECVID video copy detection task, the focal
point is to evaluate content-based approaches. For the second
year in a row, this year’s evaluation is focused on finding
copy segments from a database that resembles videos we can
find in Internet sharing sites. In total there are over 400 hours
of reference videos and a total of over 11K queries have to



Fig. 1. Blocks diagram of the system developed for Trecvid 2011, and the submitted outputs.

be searched in them, considering that both audio and video
transformations could have been applied to the videos, and
without knowing where the copied segments are to be found
within the query videos.

The system we contributed this year is an evolution of last
years’ system [2] . In addition, one of our submissions is the
result of a collaboration with another participating team. Our
system uses multimodal cues by fusing, at the decision level,
the results of an audio and video systems. The video system
is based on the Visual Search Engine (VSE) we used in 2010,
although this year we have re-architectured it to eliminate any
unnecessary intermediate steps resulting from the adaptation
of our in-house image-based similarity system [3] to process
full videos. In doing so, we have been able to eliminate many
intermediate files and to make the system cleaner and more
compact (all into one single software project). The audio
system uses totally novel features called MASK (Masked
Acoustic Spectral Keypoint features) which are local features
extracted in the spectral domain of the video’s audio track.
The algorithm we use for matching the acoustic segments is
based on the 2010 system, although with some modifications
to account for the fact that MASK features are not extracted
at constant time intervals, unlike the binary fingerprints, used
last year.

Both modalities are executed independently and a list of
possible reference video matches are obtained for each query,
together with the matching segments and a score. Finally, a
fusion algorithm we evolved from last year’s system is used to
intelligently merge both lists and obtain a resulting list with
the fused results. Note that in all our submissions we have
followed NIST’s recommendation to produce multiple possible
results for each query (in our case we produce 20 results for
every query) in order to conveniently compute DET curves
from the results. We are aware that this procedure harms our
global performance given the much higher cost of false alarms
versus the cost of missed matches.

In order to explore the possibilities of our fusion algorithm

this year one of our contrastive submissions is based on the
fusion of Telefonica’s local audio and video outputs with
PRISMA’s global video outputs. As shown already in [4] for
NIST-TRECVID 2010 results, the fusion algorithm is able
to obtain better results when combining multiple modalities,
given that they can bring orthogonal information not existent
in the other modality outputs. Using Trecvid’s 2011 data we
found that the combination of 2 multimodal local feature
approaches with a global feature approach can obtain very
prominent improvements compared to any of the individual
modalities alone, shown by the very good results we obtained
with the “joint” system.

The remaining of this notebook paper is structured as
follows: first we describe the overall system architecture and
different monomodal systems we developed for the evaluation.
Next we describe the fusion algorithm used to bring together
all results into a single output file. Next we present our
evaluation results and we perform an exhaustive evaluation
of the fusion algorithm y using 17 system outputs of 10
participating teams. We finally we draw some conclusions
from the evaluation and results, and talk about future work.

II. TELEFONICA RESEARCH MULTIMODAL VIDEO COPY
DETECTION

The system presented by Telefonica in the video copy de-
tection task at Trecvid is based on the fusion at decision level
of several monomodal systems, as shown in Figure 1. Both
the indexing and retrieval process is started by the extraction
of features from the videos (reference or query) involved. This
year we have used the same local video features as last year
and have experimented with a totally novel local audio feature
called MASK, described below. In addition, for this year’s
submission we have collaborated with Juan Manuel Barrios
at PRISMA group in order to generate one of the contrastive
submissions as the fusion of our monomodal systems with
their global video-based system. Such collaboration has been



encouraged by the good results we obtained in the fusion of
Trecvid 2010 results shown in [4].

Once all features have been extracted they are either stored
into the reference databases (different databases have been
used for each modality, depending on the particular charac-
teristics of each system) or used in the matching algorithms
to find putative copies. In the later, each of the monomodal
systems performs an independent search over their database,
with different techniques, in order to obtain a list of Nk = 20
matching reference videos. For each possible match the sys-
tems return the start-end time of the matching segments both
in the reference and query videos, and a score. Scores are not
comparable among modalities, but are comparable within its
modality.

The last step in the process is the fusion of all monomodal
results. As explained in [4] and summarized below, the fusion
algorithm takes into account the relative scores in each modal-
ity, the rank of each match within the list of matches in each
modality and the overlap between matches across modalities to
produce a final list of up to 20 matching segments. Although
it could be thought that performing the fusion at the decision
level has some shortcomings with performing a fusion at
earlier stages, in our system this worked very well for several
reasons: a) we can fuse different modalities, with no restriction
on the number; b) no special care needs to be given to the
way features in each modality have been extracted, or their
matching scores; c) subsystems built for each modality can be
implemented in very heterogeneous ways.

Next we will describe in some detail the three monomodal
systems we used for this year’s submissions. The Local audio
and video systems together with the fusion algorithm were
developed entirely by Telefonica Research, while the global
video system was entirely developed by PRISMA group who
then contributed the matching results for the fusion.

III. LOCAL-AUDIO COPY DETECTION SYSTEM

A. MASK feature extraction

For this year’s submission we have implemented a novel
acoustic fingerprint that is localized in time and frequency
and is capable of discriminating between different acoustic
contents. The novel fingerprint is called MASK, which ac-
counts for Masked Acoustic Spectral Keypoint Features. It
derives from the observation that after a transformation has
been applied to the audio signal usually the spectral peaks
remain quite similar to those of the original signal. Such
information is also exploited in some well-known fingerprints
like the Shazam Fingerprint [5] or the Phillips fingerprint [6]
although all these fingerprints differ in the way the information
is encoded. The Shazam fingerprint encodes the position of
some “anchor” peaks and their distance to other peaks around
them. On the other hand, the Phillips fingerprint encodes
the energy variation across different MEL bands, indirectly
encoding both maxima and minima positions.

In MASK we tried to obtain an encoding that contained
what we considered best of each of the previous and other
implementations. To do so, we encode information around
local maxima in the spectrogram, but we do not rely on its

relationship to nearby peaks, as we consider that the resulting
fingerprints would be less robust given that at any time any of
these two peaks could shift or disappear. Instead, we encode
the energy differences between regions around each peak. In
particular, for any given signal we first compute the Fast
Fourier Transform (for 100ms of audio, computed every 10ms)
and apply the MEL-filterbank analysis to obtain a total of 32
bands (like in Phillips fingerprint). Next, we find the peaks in
the MEL-spectrogram, i.e. the MEL band vs time index where
the signal has a higher energy in comparison to all neighboring
signals. In addition to this condition, we also applied other
rules like a temporal masking region in order not to allow for
two peaks to appear too close together.

Once the spectrogram peaks have been detected we apply
a mask centered at each of the salient peaks. This defines
regions of interest around each peak that are used for encoding
the resulting binary fingerprint. A region in the mask is
defined as either a single time-frequency value or a set of
spectrogram values that are considered to contain similar
characteristics (they are usually contiguous in time and/or
frequency). The encoding is carried out by comparing the
differences in average energies between certain region pairs.
When a region is composed of several values, its energy is
represented by the arithmetic average of all its values. The
different regions defined in the mask are allowed to overlap
with each other. The optimum location and size of each region
in the mask, as well as the total number of regions, can vary
depending on the kind of audio that is being analyzed and
the number of total bits we desire for the fingerprint. The
particular mask we used for TRECVID this year is shown in
Figure 2. This mask covers 5 MEL frequency bands around
the peak – 2 bands above and 2 bands below – and extends
for 190ms – 90ms before and 90ms after. Different regions
grouping together several spectral values are labeled using a
numeric value followed by a letter.

Note that when a salient peak is found either at the band N-
1 or at band 2 (i.e. with only one band above or below it) the
mask in Figure 2 can not be placed correctly centered around
that peak as either the first or last rows would fall outside of
the spectrogram limits. In such case we duplicate the values of
the first/last available band to cover the inexistent values for
the first/last mask rows. We define the regions and the final
fingerprint in a way that such redundancy do not affect much
the properties of the resulting fingerprints.

Next, we construct the fingerprint characterizing each peak
by combining both the index of the frequency band where the
peak being described was found and the information from the
masked area around it. In our work we aim at the construction
of an up to 32 bits long fingerprint, which is sufficient for
the indexing and retrieval of a very large number of audio
documents. Future extensions to 64 bits are possible and very
straightforward by just redefining the mask and extending the
set of comparisons between its regions. The information of the
masked area around each fingerprint is encoded by comparing
(in pairs) different regions pairs from the masks above. For
every pair we set a particular bit to 1 if the first region has
greater average energy, or to 0 otherwise.



(a) Mask, layer 1

(b) Mask, layer 2

(c) Mask, layer 3

Fig. 2. TRECVID mask covering a region of 5 bands per 19 temporal frames,
split into 3 layers to better observe the overlapping regions

B. Acoustic matching algorithm

Like in last year’s evaluation, comparison between reference
and query is performed in a one-to-one basis (future work still
includes the indexing of all reference fingerprints for faster
search). First we index the fingerprints corresponding to the
reference into a hash table, storing also the time frames where
they occur. Next we use an algorithm inspired on the temporal
matching algorithm proposed in [7] in order to group the
matches into segments. Given the list of matching MASK
reference keypoints for every query keypoint, the algorithm
uses the difference between the time-stamps of each query-
reference keypoint pair to construct a histogram of match-
ing time-differences. Assuming a perfectly aligned matching
between query and reference segments (i.e. there is no time
warping or it is negligible) we will observe a big peak in the
time-difference that optimally aligns query and reference. In
top of this algorithm we apply two variations. On the one
hand, we explicitly consider a plausible small jitter/warping
of the alignment by considering for each time-difference not
only its exact value, but also the values around it. On the
other hand, for a given time-difference we we consider two
adjacent matching keypoints (either in the reference or in the
query) belong to the same matching segment only if their time
distance is below a maximum non-matching time (which we
set to 5 seconds). Any bigger distances prompt the algorithm to
create a new matching segment in the same histogram position.

Once all keypoint pairs have been inserted into the his-

togram we obtain a matching segment’s start-end position and
a score. Like last year, we are not very confident that this
score can optimally represent the distance between query and
reference segments as it contains only the evidence of the
query keypoints that match exactly the reference keypoints. In
the case of a clean audio this evidence could be enough, but
in the case of strong transformations (like some overlapping
noises in TRECVID) there will be many non-exact matches to
be considered. For this reason we perform a post-processing
step to compute a more accurate score. Given that the MASK
fingerprints are not extracted at regular time intervals we need
to introduce a new layer of complexity in finding the optimum
alignment of non-exactly-matching keypoints when comparing
the query and reference matching segments. To do so, we
first align all keypoints from the 2 matching segments at
the optimum time-difference obtained in the previous step.
Then, for every keypoint in the query that does not have a
corresponding exact match we find the reference keypoint with
smallest Hamming distance within a small window around the
position of the keypoint. At the end of the process we have a
Hamming distance for every query keypoint that we can use
to estimate with greater detail the density of matching points
in the matching segment.

IV. LOCAL-VIDEO COPY DETECTION SYSTEM

This year’s local video system is based on last year’s
submission with several engineering changes to convert the
system from image to video processing and to avoid processing
errors when lots of data flows through data networks. Next we
review the system’s main characteristics. For a more detailed
description please refer to last year’s submission [2].

A. DART Features Extraction

First an FFMPEG-based module extracts the video track
from the input video (both the reference and the query videos)
and extracts one keyframe per second into memory. We chose
not to deal with any shot-boundary detection system in order
to avoid errors in this step and ensure completeness of the
information extracted from the videos. As a downturn, our
database becomes very big and we need to split the TRECVID
collection into chunks in order to fit the data into memory on
commodity machines.

In each keyframe we perform a detection of inserted static
text and patterns, which are an important source of errors for
any local feature we tested. The detector we used operates by
sliding a temporal window of a few keyframes along the video.
For every keyframe an initial mask corresponding to static
regions is created by finding pixels whose intensity has zero
standard deviation within the temporal window surrounding
the current keyframe. Then, a dilation operator is applied to the
initial mask in order to ensure appropriate margins surrounding
the static patterns and also to fill out possible inner holes.
Conveniently, the method also masks regions close to the black
layout borders that are not very useful for matching.

In addition, many of the TRECVID videos contain moving
text and subtitles. Like with the fixed text and logos, local
features extracted from these added patterns are prone to match



very well with similar patterns inserted in totally different
videos, therefore raising the number of detected false alarms.
In order to avoid extracting features in the areas with subtitles
and moving texts we can not apply the same technique used
with static patterns as they change many times along the
duration of a video or they are sometimes semitransparent.
Instead, we have developed a very simple yet effective dedi-
cated subtitle region detector that relies on the analysis of the
spatial density of vertical edges within every single keyframe.

In this method, first vertical edges (low-to-high or high-to-
low transitions within every image row) are detected using
the Sobel operator and binarized with respect to a predefined
threshold. A pixel is classified as part of a textual region if the
density of the edges within a sliding window centered at the
pixel of interest is higher than a predefined threshold. Once all
pixels are classified as text/no-text, the resulting initial mask is
extended by applying the dilation operator within every row to
ensure a secure margin around textual regions and also to fill
out holes between or within letters. Since the above method
relies only on the presence of vertical edges it works well
for solid and transparent letters. Like in last year’s system,
we used different parameters for the top part of the keyframe
than in the bottom part, where subtitles have a higher prior
probabilty of appearance.

Finally, we extract our local features in the regions that
have not been masked in the previous processing. We use
Telefonica’s DART features [8]. In our experiments with image
databases typically DART performs better or comparable to
Scale Invariant Feature Transform (SIFT) [9] and Speeded Up
Robust Features (SURF) [10] in terms of repeatability, and
precision vs recall [8]. Moreover, it is very attractive in the
context of the video copy detection task because of its very
low computational cost (6x faster that SIFT and 3x faster than
SURF), and compactness (only 68 components).

For TRECVID keyframes we set the maximum number
of extracted keypoints to 400 in reference videos and 800
in query videos. Given all available keypoints in a keyframe
we rank them according to two factors, and select the most
representative according to the maximum numbers indicated
above. The first factor we take into account is the scale
at which the keypoints have been extracted. We consider
keypoints obtained at higher scales to be more resilient and
interesting. The second factor we apply is a temporal keypoint
consistenty across adjacent keyframes, considering as most
relevant those keypoints that have similar keypoints at the
same locations in one of both neighboring keyframes.

Differently from last year’s system, all the previous steps are
now done inside a single software, allowing to obtain a single
binary feature file for every input video. Given that the system
we use was adapted from a more generic image matching
system, we initially had to store tons of temporary files in disk
corresponding to each keyframe and derived binary keypoints,
that lead to many problems in storage and management of
execution and network errors.

B. Visual Matching Algorithm
Once reference and query keypoints have been extracted we

run the matching algorithm to find possible matching segments

of a given query in the reference database. Generally, to en-
hance the matching speed of the system we store the reference
keypoints in memory before a query is searched through them.
In the matching process we are using commodity machines
with less than 2GB of RAM memory, thus we need to split
the reference database into chunks and perform a query search
over different processing nodes. The result of each matching
node is a list of potential reference matches that we then join
together, rerank and trim to Nk = 20 final results.

V. GLOBAL-VIDEO COPY DETECTION SYSTEM

The visual global features module was developed by
PRISMA Research Group at the University of Chile [11].
It divides the detection process in five tasks: Preprocessing
(which minimizes the effect of visual transformations), Video
Segmentation (which partitions every video into segments),
Feature Extraction (which represents each segment with one or
more descriptors), Approximate Search (which for every query
segment performs an approximate k-NN search retrieving
the most similar reference segments), and Copy Localization
(which looks for chains of similar reference segments and
returns the location and score for each copy candidate).

For this submission each video was divided into segments of
333 ms length. Two visual global descriptors were extracted
for each frame and averaged for each segment: Ehd which
divided every frame into 4 × 4 blocks and for each block
measured the distribution of 10 orientation of edges; and Rgb
which divided every frame into 4×4 blocks and for each block
calculates a 4-bins histogram for each of the Red, Green and
Blue channels.

The distance between video segments is defined as a
weighted combination of global descriptors. The weights
were automatically calculated using the Weighting by Max-
τ algorithm with α=0.001. The approximate search retrieved
the k=10 nearest neighbors using an approximation parameter
T=1% with 5 pivots. Finally, the copy localization selected
the 20 copy candidates with higher score for each visual query
video (all these algorithms are detailed in [11]). This list of
the best candidates were the output of this system to the fusion
module.

VI. MULTIMODAL FUSION ALGORITHM

Every monomodal system described above takes a decision
on which reference video segments optimally match the query
video, together with a matching score. In this final module
we perform the fusion of all these results and obtain a final
multimodal list of resulting matches. The algorithm reviewed
here is similar to the one used in TRECVID 2010, where we
have slightly modified to make it robust to a) queries from a
single modality with fewer results than normal; and b) queries
with no results at all.

Generally, once all individual monomodal systems have
finished, they output a result consisting of the score-ranked
Nk-best reference matches. By fusing all these results into
a single output we are able to a) reduce the false alarm
rate from matches present in any of the outputs, and b)
reduce the miss rate of any individual modality. The final



result of the fusion algorithm is a ranked list of the N-best
overall matches, together with their final score. As a side-
product of the algorithm implementation, all resulting scores
are normalized to the range [0,1] to make it easier to later
apply a copy decision threshold, regardless of how many (and
which) modalities have been merged or their initial scores. In
our system we decided to set both Nk and N to be 20. We
are fully aware that making N = 20 we are more prone to
false alarms jeopardizing our final NDCR results (mostly in
the NoFa case) but we believe it is more usable to have 20
ranked results for many different applications.

Fig. 3. Steps involved in the multimodal fusion algorithm.

Figure 3 shows the main blocks that can form the proposed
multimodal fusion algorithm. The input of the algorithm can
be any number of individual system outputs, although in Fig-
ure 3 we just show two for convenience and space limitations.
Next we describe in detail each of the steps involved in the
fusion.

A. Scores Preprocessing and Normalization

The inputs to the algorithm are the lists of Nk-best reference
video matches from the available K input modalities for a
given query, ordered by their matching score Sk(r)
|rε{1 . . . Nk}, kε{1 . . .K}. Note that the dynamic range and
the distribution of scores for every modality will usually be
different. In order to avoid problems in the subsequent steps
we perform a simple scores normalization dividing each score
by the median score of the scores for all queries in a given
modality. Although we could do much more complicated
normalizations (e.g. normalizing the scores distributions) we
found the median score to be a good trade off between
simplicity and correctness of results.

In the next step we introduce a flooring factor α. In the
case that any of the input modalities was not able to return the
same number of matches as the other modalities (i.e. Nk < N )
it causes a potential problem as the following normalization
steps would artificially emphasize these modalities more than
the others. To void this problem we apply a preprocessing step,
that we call N -best match flooring, which consists of forcing
all modalities to have N results by extending the number of
results to this number, with α score. This flooring has two
functionalities: on the first hand it acts as a normalization
threshold for the scores when applying the normalization step
that follows. On the other hand it is a simple way to deal with
those modalities that do not provide any result, i.e. their N -
best results are all at score α, thus penalizing the final score
of any other results from other modalities.

Next, the matching scores of each modality k, S′k(r), are
independently L1-normalized in order to make them com-
parable with each other. For each score in modality k we
normalize it as Ŝk(r) =

S′
k(r)∑N

j=1 S
′
k(r)

. Note that the underlying
distribution of scores within each modality remains intact with
such normalization. For example, if one or a few scores show
much higher values than the rest in a particular modality, they
will retain such difference once normalized and will remain
high when compared with other modalities. On the contrary,
when all Nk scores have very similar values, the normalized
scores will be close to 1

Nk
and will not stand out across

modalities. Note also that by using the α flooring we ensure
that modalities with very few (sometimes only one) very low
scores do not turn to be very prominent in the fusion as they
get normalized with the accompanying α values.

B. Fusion of Normalized Scores

After preprocessing all scores we fuse them by considering
their ranking r within each modality, their normalized scores
and the temporal limits.The parameters associated with each
matching segment ck(r) in each of the computed modalities
are: ck(r) = {BQk (r), E

Q
k (r), B

R
k (r), E

R
k (r), Ŝk(r),

Ik(r)}, where BQk (r) . . . E
R
k (r) are the start-end times of the

matching segments both for query and reference videos, Ŝk(r)
is the matching score and Ik(r) is the ID of the reference video
the segment matches with.

Given all matching segments found in the different modal-
ities, in this step we want to create a set of L fused segments
C = {c1 . . . cL} containing both new segments created from
the overlap of original segments in individual modalities and
the rest of original matching segments that did not overlap
with others. For any two matching segments ck1(r1) and
ck2(r2) (or alternatively between a matching segment and a
partially fused segment) we determine they are in overlap if
Ik1(r1) = Ik2(r2) and

min{EQk (r), ERk (r)} −max{BQk (r), BRk (r)}
max{EQk (r), ERk (r)} −min{BQk (r), BRk (r)}

> 0.5

When two segments are in overlap we fuse their segment
boundaries (both for query and reference) selecting as start
time the minimum between all segments’ start times, and as



end time the maximum between all end times. Finally, given
all matching segments ck(r) that have been fused into a cl,
we obtain the final score of cl as

S(cl) =

∑
ck(r)εcl

Wk · Nk−r+1
Nk

· Ŝk(r)∑K
k=1(Wk · Ŝk(1))

(1)

where the ranking r of the segment within a given modality k
affects the final score through the term Nk−r+1

Nk
, which is 1 for

the best match and 1
Nk

for the worst. Additionally, the term Wk

is an optional weight parameter to manually emphasize some
modalities versus others in the final score. As will be seen
in the evaluation, we only use this parameter to balance the
impact of the audio versus the video modalities. Note that the
scores are normalized by the sum of all best matching scores
for each modality, Ŝk[1], which is equal to α in modalities
with no results for that query, and also all scores will be in
the [0, 1] range.

Once all S(cl) have been computed, they are ranked and
the matching clusters with the N-best scores are returned,
discarding the rest. Alternatively, an application-dependent
threshold could be used to output the matches (if any) that
exceed its value.

VII. EVALUATION RESULTS

In this section we present the official results we obtained
running the 4 submissions to TRECVID. Figures 4 and 5
show the results for the primary submission, which fuses the
results of our audio and video engines, for the balanced and
no false alarm profiles, respectively. Figure 6 shows results of
the audio-only system using MASK features and the balanced
profile. Finally, Figure 7 shows results of the joint submission
with PRISMA group, which fuses the audio and video systems
from Telefonica with the video-only system from PRISMA.
The metrics shown in the plots correspond to the standard
metrics used by NIST. These are the NDCR, the F1 and the
running time. The NDCR corresponds to a weighted sum of
the cost of misses and false alarms in the detection of copies.
Both in the Balanced and in the no false alarms profiles the
cost of false alarms is much higher than the cost of misses. In
our system we are not interested in the no false alarms profile
as it does not conform to any real-live task we are interested in
applying these algorithms to. For this reason we are not taking
any special measures to limit the false alarms in the system,
except from changing the detection threshold. Furthermore, for
all systems we return the 20-best matching reference videos,
even though NIST specifically states that only one video copy
might be found for each query. This really jeopardizes our nofa
results, which leads us to focus on the balanced results (we
submitted a nofa result as it was a requirement for participation
in the evaluation).

Table I summarizes the average optimum results for our
submissions. We can see how the multimodal NoFa submission
performed quite poorly in terms of NDCR given the high
penalties resulting from false alarms. On the contrary, the
multimodal system performed quite well in F1 both in the
NoFa and the Balanced profiles (nearly identical results). We
can see that the F1 is even higher for the joint submission,

TABLE I
SUMMARY OF TRECVID VIDEO COPY DETECTION OPTIMUM RESULTS

System Profile Min NDCR Opt. F1
Multimodal NoFa 57.768 0.948
Multimodal Balanced 0.610 0.947

MASK Balanced 0.662 0.729
joint Balanced 0.268 0.957

resulting in one of the highest F1 results this year, but it
decreases in the audio-only (MASK) submission. We can see
how both the NDCR and the F1 show improved results as
more modalities are fused, as MASK has the worse results with
only one modality involved, while joint has the best results,
with 3 modalities. This indicates that the fusion algorithm is
working well in combining the non-correlated information that
is brought by the different systems involved.
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TRECVID 2011: copy detection results (balanced application profile)
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Fig. 4. Results for primary (multimodal audio+video) submission, balanced
profile, optimum results.
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TRECVID 2011: copy detection results (no false alarms application profile)
 
Run name:                           Telefonica-research.m.nofa.multimodal
Run type:                           audio+video
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Fig. 5. Results for primary (multimodal audio+video) submission, nofa
profile, optimum results.

VIII. OVERALL FUSION EXPERIMENTS

As explained in above, the fusion algorithm we used in
this year’s evaluation is able to effectively combine the results
from different individual systems and obtain an enhanced
fused result. In our experiments we used it with only 3
different systems, for this reason after results were returned
to participants we requested participating teams to share with
us their submissions in order to try the fusion algorithm is
a larger scale. A total of 10 teams shared their submissions
from which we selected 17 runs belonging to the balanced
profile submissions. Individual evaluation results obtained by
these systems range from 0.053 and 0.99 Optimum Balanced
NDCR, as shown in Figure 8. To preserve the identity of the
submitting participants we label the system outputs from 1 to
17.

Note that the described fusion algorithm takes advantage of
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TRECVID 2011: copy detection results (balanced application profile)
 
Run name:                           Telefonica-research.m.balanced.mask
Run type:                           audio+video
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Fig. 6. Results for contrastive audio-only submission, balanced profile,
optimum results.

the rank of the different matching segments for a given query.
We noticed that several systems consistently returned a single
(or very few) results per query. While forcing the output of
a system to return a single result (or no result at all) helps
reduce false alarms, it is not optimal for the fusion algorithm,
which is not performing to its best in these cases.

Figure 9 shows the results of the first experiment, where
we plot the optimum NDCR scores obtained by the fusion
between 2 and all 17 system outputs. The order followed to
perform the fusion was in order of individual NDCR scores,
from best to worst. We see how the fusion normally improves
the overall NDCR score except for systems 5 and 15.

Next, Figure 10 shows the relative importance of each
submission in the overall fusion by showing the result of fusing
all systems except one. By comparing the results with the
overall fusion NDCR obtained in the first experiment (0.0333)
we can see that some system outputs were able to contribute
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TRECVID 2011: copy detection results (balanced application profile)
 
Run name:                           Telefonica-research.m.balanced.joint
Run type:                           audio+video
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Fig. 7. Results for contrastive joint Telefonica-PRISMA submission, balanced
profile, optimum results.

to the overall fusion (leading to a higher NDCR once they
are taken out), while some harm the system (by leading to
a better NDCR value once take out). The clearest example
of the second case is system 15 (also seen in the previous
experiment), without which we obtain an NDCR score of
0.0206.

Finally, figure 11 shows results for a final experiment where
we start from the fusion of all systems and finish with only 2.
Unlike in the first experiment, in here we draw the order of
exclusion from the fusion by first eliminating those systems
that in the second experiment showed to contribute less to the
fusion (i.e. starting at system 15), an finishing with those two
that contributed the most (i.e. the NDCR scores deteriorated
the most when taken out).

Results show that the best score we obtain is once we
eliminate the third system, with an NDCR score of 0.0195.
Interestingly, NDCR scores degrade steadily until only 5

Fig. 8. Individual system results used in the fusion experiment.

Fig. 9. Overall fusion experiment iteratively including systems to the fusion.

systems are used, and when fusing 6 systems we already obtain
better results (0.046) that the best system output we used.

IX. CONCLUSIONS AND FUTURE WORK

This year through the participation to the NIST-TRECVID
evaluation we have focused on the following: 1) we have
reworked the video-based system to deal with the videos more
effectively; 2) we have investigated a novel local-audio feature
called MASK and used in for the TRECVID task; and 3) we
have improved the multimodal fusion algorithm we presented
last year and submitted results of our systems jointly with
the results of the PRISMA group. Over all we are pleased to
see that our submissions obtained very good results both in
NDCR and F1 for the BALANCED task, which is the one
we see as closer to real-life applications. We are also pleased
to see the system slowly becoming more mature, as now it
is based solely on proprietary technology, and is becoming a
robust software entity. Next steps we are working on is the
scalability to amounts of multimedia content far beyond those
used in TRECVID in order to apply these systems to larger
applications.
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Fig. 10. Overall fusion experiment excluding from fusion one system at a
time.

Fig. 11. Overall fusion experiment iteratively excluding those systems with
worse contribution to fusion.
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