1

BBN VISER TRECVID MED 11 System

Outline

- Overview
- Feature Extraction
 - Low-level Features
 - High-level Features: Objects and Concepts
 - Automatic Speech Recognition (ASR) Features
 - Videotext OCR
- Event Detection
 - Kernel-based Early Fusion
 - System Combination
- Salient Waypoint Experiments
- MED'11 Evaluation Results
- Conclusion

BBN MED'11 Team

- BBN Technologies
- Columbia University
- University of Central Florida
- University of Maryland

Feature Extraction

Outline

- Low-level Features
- Compact Representation
- High-level Visual Features
- Automatic Speech Recognition
- Video Text OCR

Low-level Features

Low-level Features

- Considered 4 classes of features
 - Appearance Features: Model local shape patterns by aggregating quantized gradient vectors in grayscale images
 - Color Features: Model color patterns
 - Motion Features: Model optical flow patterns in video
 - Audio Features: Model patterns in low-level audio signals
- Explored novel feature extraction techniques
 - Unsupervised feature learning directly from pixel data
 - Bimodal features for modeling correlations in audio and visual streams

Unsupervised Feature Learning

- Visual features like SIFT, STIP are in effect hand coded to quantize gradient/flow information
- Explored use of independent subspace analysis (ISA), to learn invariant spatio-temporal features from data
- Method was tested on UCF 11 dataset
 - Produced 60% accuracy on UCF11 set, with block size of 10×10×16 and 16×16×20 for the first and second ISA levels
 - Produced similar results with block size of 8×8×10 and 16×16×15
 - When the two systems were combined, accuracy improved to 72%

Bimodal Audio-Visual Words

- Joint audio-visual patterns often exist in videos and provide strong multi-modal cues for detecting events
- Explored joint audio-visual modeling to discover audio-visual correlation
 - First, apply bipartite graph to model relations between the audio and visual words
 - Then apply graph partitioning to construct bi-modal words that reveal the joint patterns across modalities
- Produced 6% MAP gain over Columbia's baseline MED10 system

Bimodal Audio-Visual Words Model Illustration

Compact Representation

Compact Feature Representation

- Two-step process
- Step 1: Coding to project extracted descriptors to a codebook
- Step 2: Pooling to aggregate projections
 - Explored several spatio-temporal pooling approaches to model relationships between different features e.g. spatio-temporal pyramids

Coding Strategies

Hard Quantization

- Assign feature vector to nearest code-word
- Binary
- Soft Quantization
 - Assign feature vector to multiple code-words
 - Soft assignment determined by distance

• Sparse Coding

- Express feature vector as a linear combination $x_i = \Phi \alpha_i$ of code-words
- Enforce sparsity only k non-zero coefficients

Pooling Strategies

- Average pooling
 - Average value of projection for each code-word
- Max pooling
 - Maximum value of projection for each code-word
 - Shown to be effective for image classification
- Alpha Histogram
 - Histogram of projection values for each code-word
 - Captures distribution of projections
 - Experiments indicate utility for video analysis

Spatio-temporal Pooling

High-level Visual Features

Object Concepts for Event Detection

Desirable properties

- Object should be semantically salient and distinctive for the event
 - E.g., Vehicle is central to "vehicle getting unstuck"
- Accurate detection
 - Car detection has been studied extensively, e.g. PASCAL
- Compact and effective representation of statistics
- We employed a modified version of U. of C. object detector
- For each video frame, compute a mask from the bounding boxes
- Average over the duration of video

Example of car detection in video frame

Accumulate over time

Spatial probability map of car detections mapped to a 16x16 grid

Concept Detection

- Preliminary investigation of concept features
 - LSCOM: multimedia concept lexicon of events, objects, locations, people
- Generated mid-level concept features from large LSCOM concept pool
- Trained the Classemes model provided in [Torresani et al. 2010]
 - The concept scores generated by the classifiers were used as features for final event detection
- Conclusions
 - Concept-features < SIFT < SIFT + concept-features</p>
 - Continue investigation in year 2

Automatic Speech Recognition

Getting Speech Content

Event Detection Using Speech Content

Video Text OCR

Using Video Text OCR

OCR-based Event Score for a video clip

Concurrence scores are converted to **OCR-based event score** by max-pooling over different dictionary entries and different frames.

Event Detection

Outline

- Event Detection Overview
- Kernel-based Early Fusion
- Detection Threshold Estimation
- System Combination
 - BAYCOM
 - Weighted Average Fusion

Event Detection Overview

Threshold Estimation Procedure

- Classifiers produce probability outputs, need to select a threshold for event detection
- Perform 3-fold validation on training set, generate DET curve of false alarm vs. missed detection for every threshold
- Select threshold to optimize for NDC/Missed detection rate on curve for each fold
- Average thresholds over each fold and apply estimated threshold on test set

System Combination: BAYCOM

 Bayesian approach, selects the optimal hypothesis according to:

$$c^* = \underset{c \in C}{\operatorname{argmax}} P(c \mid r_1, \dots, r_n)$$

• Factorize assuming independence of system hypotheses

$$P(c | r_1, ..., r_n) = P(c) \prod_{i=1}^{n} P(s_i | c_i, c) P(c_i | c)$$

- Probabilities estimated from system performance relative to threshold
- Apply smoothing of conditional probabilities with class independent probabilities to overcome sparseness

Salient Waypoint Experiments

Experimental Setup

- Event Kits and Dev-T are split into Train, Dev and Test partitions
 - Train: for training initial models
 - Dev: for parameter optimization, fusion experiments
 - Test: to validate adjustments on the dev set
- 5 training events in Event Kits are split in Train and Dev, to simulate evaluation submission where all event kit videos are used for classification
- Positives in Dev-T set for the 5 training events placed into Test partition
- Setup may be sensitive to unlabeled positives in the negative Dev-T videos

High Level Features

MKL Based Early Fusion

NDC

Average

Late Fusion

		Dev Set		Test Set				
Approach	Avg. P _{MD}	Avg. P _{FA}	Avg. ANDC	Avg. P _{MD}	Avg. P _{FA}	Avg. ANDC		
Min	0.5060	0.0154	0.6979	0.4950	0.0139	0.6686		
Max	0.3606	0.0272	0.6999	0.3436	0.0263	0.6721		
Voting	0.4161	0.0178	0.6383	0.3881	0.0154	0.5796		
Average	0.3555	0.0230	0.6432	0.3219	0.0217	0.5925		
BAYCOM	0.5008	0.0068	0.5855	0.5105	0.0080	0.6109		
Weighted Average	0.3873	0.0166	0.5951	0.3599	0.0159	0.5583		

MED'11 Evaluation Results

System Description

BBNVISER-LLFeat

- Combination of appearance, color, motion based, MFCC, and audio energy using MKL-based early fusion strategy
- Threshold estimated to minimize the NDC score

BBNVISER-Fusion1

- Combines several sub-systems, each based on different sets of low-level features, ASR, and other high-level concepts using BAYCOM
- Threshold estimated to minimize the NDC score

System Description

BBNVISER-Fusion2

- Combines same set of subsystems as BBNVISER-Fusion1 using weighted average fusion
- Threshold estimated to minimize the NDC score

• BBNVISER-Fusion3

- Combines all the sub-systems used in BBNVISER-Fusion3 with separate end-to-end systems from Columbia and UCF using weighted average fusion
- Threshold estimated to minimize the probability of missed detection in the neighborhood of 6% false alarm rate ceiling

Summary of Performance

Average Performance: MED11 Systems

- Both early fusion of features and late fusion of systems are important
- High-level information from ASR, object/scene concepts, and video text OCR produces significant gains 1/12/2012

Performance Analysis (Flash Mob Gathering)

5								1
9		· · · · ·					 	
				- 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2				
9								
	ς.					/		
,	- <u>\</u>				/		<u>`</u>	
	\sim							
,	ł							
			\sum	1)				
,		•						
				X	<u> </u>	~~~	 	
)		-					b	
,			1	l	<u> </u>			

	Randon Performance
	Iso-cost ratio lines
AutoEAG_c-Fusion1 - Actual	PMiss=0.220 PFA=0.004 NDC=0.267
Min	PMiss=0.220 PFA=0.004 NDC=0.263 🏾 🏮
IsoRatio=12.4875	PMiss=0.182 PFA=0.015 NDC=0.364 🔹
AutoEAG_c-Fusion2 - Actual	PMiss=0.189 PFA=0.009 NDC=0.297
Hin	PMiss=0.136 PFA=0.012 NDC=0.280
IsoRatio=12.4875	PMiss=0.144 PFA=0.012 NDC=0.288
AutoEAG_c-LLFeat - Actual	PMiss=0.250 PFA=0.009 NDC=0.367 —
Hin	PMiss=0.220 PFA=0.011 NDC=0.359 💧 🔺
IsoRatio=12,4875	PMiss=0,182 PFA=0,015 NDC=0,365 🛛 🔺
AutoEAG_p-Fusion3 - Actual	PMiss=0.023 PFA=0.045 NDC=0.586
Hin	PMiss=0,197 PFA=0,006 NDC=0,268 🛛 🧡
IsoRatio=12,4875	PMiss=0,152 PFA=0,012 NDC=0,303 🛛 🔻

- High-level features provide significant gains
- BAYCOM optimizes the performance at a single point on the DET curve (detection threshold) and is sub-optimal at other points
- Weighted average fusion strategy improves performance over the entire DET curve

Raytheon BBN Technologies

Performance Analysis (Getting Vehicle Unstuck)

	Randon Performance ———
	Iso-cost ratio lines
RutoEAG_c-Fusion1 - Actual	PMiss=0.411 PFA=0.004 NDC=0.457 ————
Min	PMiss=0.379 PFA=0.005 NDC=0.436 🛛 🏮
IsoRatio=12,4875	PMiss=0.326 PFA=0.026 NDC=0.653 🔹 🎙
RutoEAG_c-Fusion2 - Actual	PMiss=0,263 PFA=0,011 NDC=0,396
Min	PMiss=0.274 PFA=0.008 NDC=0.380
IsoRatio=12,4875	PMiss=0.211 PFA=0.017 NDC=0.421
AutoEAG_c-LLFeat - Actual	PMiss=0.295 PFA=0.013 NDC=0.455 ———————————————————————————————————
Hin	PMiss=0,305 PFA=0,011 NDC=0,443 💧 🔺
IsoRatio=12,4875	PMiss=0,263 PFA=0,021 NDC=0,526 🛛 🔺
RutoEAG_p-Fusion3 - Actual	PMiss=0,137 PFA=0,042 NDC=0,657 ————
Min	PMiss=0,295 PFA=0,007 NDC=0,380 🔻 🔻
IsoRatio=12,4875	PMiss=0,211 PFA=0,017 NDC=0,421 🗸 🗸

Performance Analysis (Grooming an Animal)

5										
0	1									
9		٩.								
3		1			·	• •	- ~			
3			· · · ·					۲	۱	
,				/	/ ⁷⁴		L			
						75	-3 ₁₀	<u> </u>		
, _		/							5	

	Randon Performance
	Iso-cost ratio lines
AutoEAG_c-Fusion1 - Actual	PMiss=0.713 PFA=0.003 NDC=0.756 — 🔿 —
Hin	PMiss=0,701 PFA=0,004 NDC=0,752 🛛 🌻
IsoRatio=12,4875	PMiss=0.632 PFA=0.051 NDC=1.264 🔹 🎙
AutoEAG_c-Fusion2 - Actual	PMiss=0.471 PFA=0.012 NDC=0.626 —
Min	PMiss=0.471 PFA=0.012 NDC=0.622
IsoRatio=12,4875	PMiss=0.345 PFA=0.028 NDC=0.690
AutoEAG_c-LLFeat - Actual	PMiss=0.448 PFA=0.020 NDC=0.697 —
Min	PMiss=0,529 PFA=0,010 NDC=0,652 💧 🔺
IsoRatio=12,4875	PMiss=0.379 PFA=0.030 NDC=0.759 🛛 🔺
AutoEAG_p-Fusion3 - Actual	PMiss=0.264 PFA=0.050 NDC=0.895 — 🖓 —
Min	PMiss=0.575 PFA=0.006 NDC=0.655 🛛 🧡
IsoRatio=12,4875	PMiss=0,368 PFA=0,029 NDC=0,736 🛛 🔻

- The gain from high-level features is minimal
 - Most of the videos did not have any associated audio or text information for ASR or videotext OCR to work
 - Scene and object concepts were not helpful either

Conclusions

- Low-level features demonstrate strong performance and form the core of the system
- Speech and Video-text OCR provide significant performance gains
- Object and scene concept detection are promising, but gains are not consistent
- MKL fusion of even similar features produce gains, while diverse feature combinations produce largest gains
- Late fusion of multiple systems produces consistent gains
 - Video-specific weighted averaging has the best performance