Combining Features at Search Time: PRISMA at TRECVID 2011

<u>Juan Manuel Barrios</u>¹, Benjamin Bustos¹, and Xavier Anguera²

¹ PRISMA Research Group, Department of Computer Science, University of Chile.

² Telefónica Research, Barcelona, Spain.

Content-Based Video Copy Detection Task, TRECVID.

December 7, 2011

P-VCD Overview

- P-VCD System developed for TRECVID 2010. [1]
- **2010**: Visual-only detection.
 - Global descriptors.
 - □ Approximate k-NN search using pivots.
- 2011: Audio+Visual detection.
 - □ Fusion of audio and global descriptors at the similarity search: "distance fusion".
 - Approximate search as a filtering step.
 - □ Sequential (exact) A+V search.

[1] J.M.Barrios and B.Bustos. *Competitive content-based video copy detection using global descriptors*. Multimedia Tools and Applications. Springer, 2011.

Fusion at Decision Level

Fusion at Similarity Search Level

P-VCD 2011 Overview

1. Preprocessing

- Removes black borders and noisy frames from each query and reference video.
- For each query video, it creates a flipped version and detects and reverts PIP and camcording.

	Audio	Visual	Audio+Visual
Original Queries	1,407	1,608	11,256
New Queries	-	3,539	-
Total Queries	1,407	5,147	36,029

2. Video Segmentation

 Partitions every query and reference video into segments of 0.333 ms length (visual and audio track).

Visual track				
Audio track				

	Audio segments	Visual segments	Audio+Visual segments
Query collection	306,304	1,120,455	7,840,587
Reference collection	4,441,717	4,522,262	4,387,633

3. Feature Extraction

- Three Visual-Global descriptors per segment:
 - □ Edge Histogram (Ehd): 4x4x10 =160d.
 - \square Gray Histogram (Gry): 4x4x12 = 192d.
 - \square Color Histogram (Rgb): 4x4x12 = 192d.
- The descriptor for a visual segment is the average descriptor for every frame.

One Audio Descriptor (Aud), 160d.

4. Distance Fusion

 Distance between two descriptors: Manhattan distance (city-block)

$$L_1(\vec{x}, \vec{y}) = \sum_{i=0}^{dim} |x_i - y_i|$$

Distance between any two Audio+Visual segments:

$$d_{av}(q,r) = \frac{w_1}{\tau_1} * L_1(\operatorname{Ehd}(q), \operatorname{Ehd}(r)) + \frac{w_2}{\tau_2} * L_1(\operatorname{Rgb}(q), \operatorname{Rgb}(r))$$
$$+ \frac{w_3}{\tau_3} * L_1(\operatorname{Aud}(q), \operatorname{Aud}(r))$$

Normalization factors τ_i and weighting factors w_i are calculated by the " α -Normalization" and "weighting by max- τ " algorithms. [1]

4. Distance Fusion (cont.)

- For efficiency, we define two more distances:
 - Between two audio segments:

$$d_a(q,r) = L_1(\text{Aud}(q), \text{Aud}(r))$$

Between two visual segments:

$$d_v(q,r) = \frac{w_1}{\tau_1} * L_1(\text{Ehd}(q), \text{Ehd}(r)) + \frac{w_2}{\tau_2} * L_1(\text{Rgb}(q), \text{Rgb}(r))$$

$$d_v(q,r) = \frac{w_1}{\tau_1} * L_1(\text{Ehd}(q), \text{Ehd}(r)) + \frac{w_2}{\tau_2} * L_1(\text{Gry}(q), \text{Gry}(r))$$

5. Search Domain Filtering

- It performs approximate k-NN searches [1] using visualonly distance and audio-only distance.
 - oxdot Requirement: d complies the triangle inequality.

- Distance approximation: $d(a,b) \approx |d(a,p) d(p,b)|$
- For many pivots: $d(a,b) \approx \max_{p \in \mathcal{P}} |d(a,p) d(p,b)|$
- It evaluates the actual distance only for the pairs with lowest approximated distance.

5. Search Domain Filtering

 Perform approximate k-NN searches for each query segment using visual-only distance and audio-only distance (k=30).

For each query video, it selects the D reference videos that have more segments in the k-NN lists (D=40).

```
Query1 — {Vid01, Vid02, Vid03, Vid07, Vid08, Vid09}
Query2 — {Vid02, Vid04, Vid06, Vid07}
```

6. Exact k-NN Search

- For each query segment performs an exact k-NN search using the audio+visual distance (k=10).
- The search space domain depends on each query video.

Query1 — {Vid01, Vid02, Vid03, Vid07, Vid08, Vid09}

k-NN list $\,d_{av}$

7. Copy Localization

Locates chains of NN with temporal consistency. [1]

k-NN list d_{av}

- No False Alarms profile:
 - It reports the candidate with the highest score.
- Balanced profile:
 - It reports the two candidates with highest scores.

```
Detection List

Query1 Segm2-Segm8 Vid09 Segm13-Segm19 score
...
...
```

TRECVID 2011 Results

No False Alarms profile

- Analysis focused on optimal threshold and average result for all transformations.
- No False Alarms profile:
 - One candidate per query.
 - EhdGry: Combination of two global descriptors
 - Average Optimal NDCR=0.374
 - Average Optimal F1=0.938
 - Average Processing Time=50 s
 - EhdRgbAud: Combination of two global descriptors and audio
 - Average Optimal NDCR=0.286
 - Average Optimal F1=0.946
 - Average Processing Time=64 s

TRECVID 2010

Avg.Opt.NDCR=0.611

Avg.Opt.F1=**0.828**

Avg.Proc.Time=128 s

No False Alarms profile

- Multimodal detection outperforms visual-only detection.
- The exact search step increases the accuracy for copy localization.
- Good tradeoff between effectiveness and efficiency.
- Global descriptors can achieve good performance in NoFA profile.

Balanced profile

- Balanced profile:
 - Two candidates per query.
 - EhdGry: Combination of two global descriptors
 - Average Optimal NDCR=0.412
 - Average Optimal F1=0.938
 - Average Processing Time=50 s

TRECVID 2010

Avg.Opt.NDCR=0.597

Avg.Opt.F1=**0.820**

Avg.Proc.Time=128 s

- EhdRgbAud: Combination of two global descriptors and audio
 - Average NDCR=0.300
 - Average F1=0.955
 - Average Processing Time=64 s
- Joint submission with Telefonica team.
 - **EhdRgb** with twenty candidates per query.
 - Late fusion with Telefonica's audio and local descriptors.

CCD TASK

Balanced profile

- Good localization accuracy.
- Good tradeoff between effectiveness and efficiency.
- Global descriptors achieve better performance in NoFA profile than in Balanced profile.
- All these tests were run on a desktop computer:
 - □ Intel Core i7-2600k
 - □ 8 GB RAM

Conclusions

- We have presented the "distance fusion" approach for combining global and audio descriptors.
 - □ It automatically fixes a good set of weigths.
- The approximate search can avoid most of the distance evaluations while achieving a good detection performance.
 - □ The analysis of the approximate search is in [1].
- The exact search step increases the accuracy for the copy localization.
- Future work:
 - □ Fuse audio, global and local descriptors following this approach.
 - Test non-metric distances at the exact search step.
 - Test a segmentation with overlaps.

Thank you!

k-NN list d_{av}

