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In the first part of this three-part report we describe our system and novel approaches 
used in the TRECVID 2012 Multimedia Event Detection (MED) and Multimedia Event 
Recounting (MER) tasks. A separate section of the report (SIN) details methods and 
results for the Semantic Indexing task. The final section (SED) describes our 
approaches and results on the Surveillance Event Detection task. 
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Abstract 
We report on our system used in the TRECVID 2012 Multimedia Event Detection (MED) and 
Multimedia Event Recounting (MER) tasks. For MED, it consists of three main steps: extracting 
features, training detectors and fusion. In the feature extraction part, we extract many low-level, 
high-level, and text features. Those features are then represented in three different ways which are 
spatial bag-of words with standard tiling, spatial bag-of-words with feature and event specific 
tiling and the Gaussian Mixture Model Super Vector. In the detector training and fusion, two 
classifiers and three fusion methods are employed. The results from both the official sources and 
our internal evaluations show good performance of our system. Our MER system utilizes a subset 
of features and detection results from the MED system from which the recounting is generated. 
 
1.   MED System 
1.1 Features 
In order to encompass all aspects of a video, we extracted a wide variety of low-level and high-
level features. Table 1 summarizes the features used in our system. Among those features, most of 
them are widely used features in the community, for example, SIFT, STIP and MFCC. We 
extracted those features using standard code available from the authors with default parameters.  

Table 1: Features used for MED’12 system 

 Visual Features Audio Features 

Low-level 
features 

1. SIFT 
(Sande, Gevers, & Snoek, 2010) 

2. Color SIFT (CSIFT) 
(Sande, Gevers, & Snoek, 2010) 

3. Motion SIFT (MoSIFT) 
(Chen & Hauptmann, 2009) 

4. Transformed Color Histogram (TCH) 
(Sande, Gevers, & Snoek, 2010) 

5. STIP 
(Wang, Ullah, Klaser, Laptev, & 
Schmid, 2009) 

6. Dense Trajectory 
(Wang, Klaser, Schmid, & Liu, 2011) 

1. MFCC 
2. Acoustic Unit Descriptors (AUDs) 

(Chaudhuri, Harvilla, & Raj, 
2011) 

High-level 
features 

1. Semantic Indexing Concepts (SIN) 
(Over, et al., 2012) 

2. Object Bank 
(Li, Su, Xing, & Fei-Fei, 2010) 

1. Acoustic Scene Analysis 

Text 
Features 

1. Optical Character Recognition 1. Automatic Speech Recognition 

Besides those common features, we have two home-grown features which are Motion SIFT 



(MoSIFT) and Acoustic Unit Descriptors (AUDs). We will introduce these two features in the 
following subsections. 

1.1 .1 Motion SIFT (MoSIFT)  Feature 
The goal of developing the MoSIFT feature is to combine the features from the spatial domain and 
the temporal domain. Local spatio-temporal features around interest points provide compact and 
descriptive representations for video analysis and motion recognition. Current approaches tend to 
extend spatial descriptions by adding a temporal component to the appearance descriptor, which 
only implicitly captures motion information. MoSIFT detects interest points and encodes not only 
their local appearance but also explicitly models local motion. The idea is to detect distinctive 
local features through local appearance and motion. Figure 1 demonstrates the MoSIFT algorithm. 

 
Figure 1: System flow chart of the MoSIFT algorithm.  

The algorithm takes a pair of video frames to find spatio-temporal interest points at multiple 
scales. Two major computations are applied: SIFT point detection and optical flow computation 
according to the scale of the SIFT points. 

For the descriptor, MoSIFT adapts the idea of grid aggregation in SIFT to describe motions. 
Optical flow detects the magnitude and direction of a movement. Thus, optical flow has the same 
properties as appearance gradients. The same aggregation can be applied to optical flow in the 
neighborhood of interest points to increase robustness to occlusion and deformation. The two 
aggregated histograms 
(appearance and optical flow) are combined into the MoSIFT descriptor, which now has 256 
dimensions. 

1.1 .2   Acoustic Unit Descriptors (AUDs) 
We have developed an unsupervised lexicon learning algorithm that automatically learns units of 
sound. Each unit is such that it spans a set of audio frames, thereby taking local acoustic context 
into account. Using a maximum-likelihood estimation process, we can learn a set of such acoustic 
units unsupervised from audio data.  
Each of these units can be thought of as low-level fundamental units of sound, and each audio 
frame is generated by these units. We refer to these units as Acoustic Unit Descriptors (AUDs) 
and we expect that the distribution of these units will carry information about the semantic content 
of the audio stream. Each AUD is represented by a 5-state Hidden Markov Model (HMM) with a 
4-gaussian mixture output density function.  

Ideally, with a perfect learning process, we would like to learn semantically interpretable lower-
level units, such as a clap, a thud sound, a bang, etc. Naturally, it is hard to enforce semantic 
interpretability on the audio learning process at that level of detail. Further, because the space of 
all possible sounds is so large, many different sounds will be mapped into single sounds at 
learning time, since we can only learn a finite set of units.  

1.2  Feature  Representat ions 



In the previous section, we briefly describe the features we used in the system. In this 
section, we will describe the representations we used for the raw features extracted in 
Section 1.   

Three representations were used in our system. They were K-means based spatial bag-of-
words model with standard tiling (Lazebnik, Schmid, & Ponce, 2006), K-means based 
spatial bag-of-words with feature and event specific tiling (Viitaniemil & Laaksonen, 2009) 
and Gaussian Mixture Model Super Vector (Campbell & Sturim, 2006). Since the K-means 
based spatial bag-of-words model with standard tiling and Gaussian Mixture Model Super 
Vector are standard technology, we will focus on the K-means based spatial bag-of-words 
model with feature and event specific tiling. For simplicity, we will refer to it as tiling. 

Spatial bag-of-words model is a widely used representation of the low-level image/video 
features. The central idea of the spatial bag-of-words model is to divide the image into some 
small tiles and compute bag-of-words for each tile.  Figure 2 shows a couple of tiling 
examples. 

 
Figure 2: Examples of tiling 

In general, the standard spatial bag-of-words tiling uses the 1x1, 2x2 and 4x4 tiling. 
However the use of those tilings is ad-hoc and some preliminary works have shown that 
other tilings might produce better performance (Viitaniemil & Laaksonen, 2009). 

In our system, we systematically tested 80 different tilings to select the best one for each 
feature and each event. Table 2 shows the performance of feature specific tiling v.s. the 
standard tiling. The scores are computed from our internal experiments and are the average 
over 20 MED12 pre-specified events. The PMiss @ TER=12.5 metric is an official 
evaluation metric specified in the MED 2012 Evaluation Plan. A smaller PMiss score 
signifies better performance. From the table, we can see clearly that for all of the five 
features, the feature specific tiling performs consistently at least 1% better than the standard 
tiling. 

Table 2: The performance of feature specific tiling and standard tiling 
Feature SIFT CSIFT TCH STIP MOSIFT 

Feature Specific Tiling  0.4209 0.4496 0.4914 0.5178 0.4330 
Standard Tiling 0.4325 0.4618 0.5052 0.5234 0.4456 

Figure 3 shows an example of the performance of event specific tiling v.s. standard tiling on 
Event 25 (marriage proposal), which is a difficult event identified in our experiments. It can 
be seen clearly that the event specific tiling can noticeably improve the performance over 
standard tiling. 



 
Figure 3: The comparison of event specific tiling and standard tiling on Event 25 

1.3  Training and Fusion 
We used the standard MED’12 training dataset for our internal evaluation and the training of 
the models for our submission. For our internal evaluation, the MED’12 training dataset was 
further divided into the training set and testing set by randomly selecting half of the positive 
examples into the training set and the other half into the testing set. The negative examples 
consisted of only NULL videos which do not have label information.  

The two classifiers used in the system were kernel SVM and kernelized rigid regression. For 
simplicity, we will refer to it as kernel regression. For the K-means based feature 
representations, we used the Chi-squared kernel. For the GMM based representation RBF 
kernel was used. The parameters of the model were tuned by 5-fold cross validation and the 
PMiss @ TER = 12.5 metric was used as the evaluation metric. 

For combining features from multiple modalities and the outputs of different classifiers, we 
used fusion and ensemble methods. More specifically, for the same classifier, we used three 
fusion methods to fuse different features. The fusion methods were early fusion, late fusion 
and double fusion (Lan, Bao, Yu, Liu, & Hauptmann, 2012). In early fusion, the kernel 
matrices from different features were normalized first and then combined together. In late 
fusion, the prediction scores from the models trained using different features were combined. 
In our system, we also used a fusion method called double fusion, which combines early 
fusion and late fusion together. Finally, the results from different classifiers were ensembled 
together. Figure 4 shows the diagram of our system. 

 
Figure 4: The diagram of the system 
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1.4  Submiss ion 
In the following section we describe in detail the runs we submitted to NIST. Table 3 shows the 
official performance of each submission. 

1.4 .1 Pre-Specified Submission 
1.4.1.1 Submission 1: 
CMU_MED12_MED12TEST_PS_MEDFull_EKFull_AutoEAG_p_ensembleKRSVM_1 

In this submission, using the features described in the previous section, we did the following to 
generate this run: 

1. For each feature, train a SVM classifier and a kernel regression model. 
2. Late fusion of all the results from SVM classifiers and kernel regression respectively. 
3. Early fusion of all features except ASR. 
4. Train a SVM classifier and a kernel regression model using 3 respectively. 
5. Double fusion of SVM classifiers in 2 and 4. 
6. Double fusion of kernel regression model in 2 and 4. 
7. Ensemble of 5 and 6. 

1.4.1.2 Submission 2: 
CMU_MED12_MED12TEST_PS_MEDFull_EK10Ex_AutoEAG_c_KRLF_1 

1. For each feature, train a kernel regression model. 
2. Late fusion of all the results from 1. 

1.4.1.3 Submission 3: 
CMU_MED12_MED12TEST_PS_MEDFull_EKFull_AutoEAG_c_SVMLF_1 

1. For each feature, train a SVM classifier. 
2. Late fusion of all the results from 1. 

4.1.4 Submission 4: 
CMU_MED12_MED12TEST_PS_MEDFull_EKFull_AutoEAG_c_BOB_1 

1. Form all prediction results from step 1-7 in Submission 1 into a pool.  
2. For each event, find the candidate in the pool which has the best performance. 
3. Combine the candidates of each event together to form the submission. 

1.4.2 Ad-Hoc Submission 
1.4.2.1 Submission 5: CMU_MED12_MED12TEST_AH_MEDFull_EKFull_AutoEAG_p-
SVM_1 
The following features were used: SIFT, CSIFT, Transformed Color Histogram (TCH), Motion 
SIFT (MoSIFT), STIP, Dense Trajectory (DT), MFCC, SIN and Object Bank. Different from our 
pre-specified EKFull submission, we did not use GMM Super Vector and tiling representations. 
To get the detection results, the following steps were performed, which pretty much followed the 
pre-specified submission: 

1. For each feature, train a SVM classifier. 
2. Late fusion of the scores of each feature obtained from step 1. 
3. Early fusion of the distance matrices of all the visual and acoustic features, and then use 

the obtained distance matrix to compute the kernel matrix.  
4. Train a SVM classifier based on the kernel obtained by step 3. 
5. Double fusion of the results from step 2 and step 4. 

 
1.4.2.2 Submission 6: CMU_MED12_MED12TEST_AH_MEDFull_EK10Ex_AutoEAG_c-
KR_1 

Same features as Submission 5 were used in this submission. In our previous experiment, SVM 
tends to over fit the limited positive exemplars. Thus for EK10 we used kernel regression with 
Chi-squared kernel as the classifier. As we only have 10 positive exemplars for training, it is 
trickier to tune the regularization parameter of kernelized rigid regression by cross-validation. We 



have observed in our experiment that fixing the parameter to 1 usually yields good performance, 
though not necessarily the best. We therefore set regularization parameter as 1 for all the events. 
To get the detection results, the following four steps were performed, which pretty much followed 
the pre-specified submission: 

1. For each feature, train a kernel regression model. 
2. Late fusion of the prediction scores of each feature obtained from step 1. 
3. Early fusion of the distance matrices of all the visual and acoustic features, and then use 

the obtained distance matrix to compute the kernel. 
4. Train a rigid regression classifier based on the kernel obtained by step 3. 
5. Double fusion of the scores obtained from step 2 and step 4. 

Table 3: The official performance of the 6 submissions 
Task Train Type EAG SYSID NDC PFa PMiss 

Pre-Specified 

EKFull AutoEAG p-ensembleKRSVM_1 0.637 0.0341 0.2113 
EKFull AutoEAG c-SVMLF_1 0.6584 0.0341 0.2325 
EKFull AutoEAG c-BOB_1 0.6427 0.0341 0.2168 

EK10Ex AutoEAG c-KRLF_1 0.8588 0.0345 0.4286 

Ad-Hoc EKFull AutoEAG p-SVM_1 0.6494 0.0354 0.208 
EK10Ex AutoEAG c-KR_1 1.1078 0.0568 0.3982 

2.  MER System 

2.1 Features 
We included the following aspects in our MER submission:  

• Relationships 
o Visual features that are relevant to the event 
o Audio features that are relevant to the event 
o Co-occurrence of the visual concepts (SIN’11) 

• Observations 
o Event-Relevant Visual Concepts 
o Video-Distinctive Visual Concepts 
o ASR Transcripts 
o Event-Specific Object Bank Results 
o Audio Concepts (Noisemes) 

2.2 Visual and Audio Concepts 
We use the histogram of each video semantic class aggregated over the whole video clip. To use 
the visual concepts, we first generated a bipartite graph matching of Object Bank classes and 
SIN’11 concepts for the MED12 dataset. The process flow is shown in the Figure 5.  

 
Figure 5: Flow chart of visual and audio concepts processing 



The Noiseme semantic audio concepts similarly indicate “non_linguistic_audio” information in 
the video. (e.g. “speech”, “music”, “noise” etc.).  We use the histogram of each audio concept in 
the video to mention that in this video we can mainly hear the sound of music, singing or noise. 
We again use Bipartite Graph Matching to map the Noisemes to the events. All the audio concepts 
are ranked based on their percentage in the video. 

2.3 ASR Transcripts 
Automatic speech recognition transcripts that indicate “linguistic_audio” information in the video. 
(e.g. “okay”, “hello”, “she didn’t” etc.).  We use TF-IDF according to the word-level ASR 
confidence to calculate the relevant of each ASR word result to the event kit. We then rank the 
ASR Transcripts according to their relevance to the event. 

2.4  An Example of Our Recounting Submission 
The requirements of the submission were that all Multimedia Event Recounting (MER) 
participants are required to produce a recounting for 30 selected video clips where it is known that 
the clip contains a specific MER event. There will be five events chosen from the MED pre-
specified events list, and six video clips per event. The system's recounting summarizations were 
to be evaluated by a panel of judges. 

An example of our recounting submission is shown in Figure 6. 

 
Figure 6: An example of our MER submission 

2.5 Performance 
Table 4 shows the performance of our MER system compared to the average performance of other 
submitted systems. We achieve significantly better performance in the two MER tasks, which 
shows the effectiveness of our MER system. 

 

 



Table 4: Official performance of MER 

 MER-to-Event MER-to-Clip Combined 
(0.4*E+0.6*C) 

Average of submitted systems 68.75% 43.72% 0.54 
CMU_ELamp-MER-System 85.56% 66.30% 0.74 
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1 Features 
For this year’s SIN submission we used three features:  SIFT, Color SIFT (CSIFT) and Motion 
SIFT (MoSIFT). SIFT and CSIFT (with Harris-Laplace detectors) describe the gradient and color 
information of images. MoSIFT describes both the optical flow and gradient information of video 
clips. Compared with 2011’s submission, we only use 3 features instead of 5 features. 

2 Label Set 
In this year’s submission we used the SIN 2011’s label set instead of SIN 2012’s label set, as we 
incorrectly used the label set proposed on the task’s webpage. 

3 Classifiers 
The cascade SVM classifiers are adopted as our classifier, which is essentially the same algorithm 
as [1]. However, this year we implemented the cascade SVM algorithm on Hadoop to accelerate 
the SIN extraction. Now the kernel computation component and the SVM testing component are 
released at [2]. Using the Hadoop cascade SVM we can finish SIN training and testing in 36 hours 
on PDL Open Cloud platform which consists of 50 compute nodes with 2x quad-core Intel E5440 
(2.83GHz, 12MB L2 cache, 1333 MHz FSB). 

4 Submitted Runs 
We submitted 4 runs for the individual concept runs. 
• Run1: Safe run as last year using 3 features (SIFT-CSIFT-MOSIFT) cascade SVM 

model. 
• Run2: Late fuse Run 1 with random forest models trained on SIFT features. The 

experiments show that random forest trained on the SIFT feature yields the best 
improvement over Run1. Generally random forest models are worse than SVM models, 
so during the fusion, SVM’s performance are fused according to the following formula: 

Fusion_score = 0.8 * SVM_score + 0.2 *Random_forest_score 
• Run3: Label propagation on Run2. According to the relation between concepts, the 

prediction of individual concept could be reinforced by its related concepts. Our goal is to 
boost the accuracy of the concept detector by its related concept detectors.  
We regard the concept detector score as a message which is propagated through the 
graph. It consists of two steps forward and backward passes and after the propagation 
each node receives the message from all the other nodes in its connected component. 
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Fig.1. an illustrative example of label propagation on the sun-graph on bicycles. 
 
According to our experiments on development set, this improvement is considerable on 
SIN 2011’s evaluation dataset, where our current best run without propagation is 0.1508 
and after the propagation the number is improved to 0.1575. The winner’s best score is 
0.173 (since they use additional features). 

 
Fig. 2 the performance of label propagation on SIN 2011’s development set. 

 
• Run4: Brave ideas on Run3. For some inaccurate concepts, we did some aggressive 

propagation (same algorithm as RUN3 but with aggressive parameters) to improve them. 
In addition, we filtered out the top 2000 blank, black and junk frames in the rest concepts. 

We submitted 2 runs for the pair run which is to detect pairs of unrelated concepts instead of 
detects simple concepts. Our general idea is as follows: training individual concept detectors and 
then enhancing the prediction of pair concept using the related concept detectors. For example for 
the pair concepts “[901]  Beach + Mountain” , we used the concepts like "Beach", "Mountain", 
"Valleys", "Rocky_Ground", "Outdoor", "Lakes", "Islands". The difference between the two runs 
lie in the different weights in combing the final score. 
 

• Run5 employs the average score for each related concepts. 
 

• Run6 applies the score based on the concepts’ prediction accuracy in the development 
set.  

 
Experimental Results 
In this section we summarize our results. Tab.1 shows our results in the full run. Our observation 
is that  

• Random Forest + SVM may not improve (probably hurt) the performance. 
• Aggressive label propagation helps a little bit on SIN 2012 dataset 

We extrapolate that for the label propagation, the reason why no significant improvement is that 
our individual concept detector is not as good as others (since we used the last year’s training 
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dataset). In addition, more than half of the concepts are isolated in the concept relation graph and 
therefore the label propagation doesn’t change their prediction values 
 

Tab. 1. The final results of our individual concept detection run 

RUN NAME INF AP 
F_A_CMU4_4  0.204174  
F_A_CMU3_1  0.202609  
F_A_CMU1_3  0.202087  
F_A_CMU2_2  0.201457  

 
Tab.2 shows our results for the pair run. We think enhance the pair detection with the related 
concepts seems correct approach and weighting the parameters according to concept’s accuracy 
seems to be better. 
 

Tab. 2. The final results of our pair concept detection run 
RUN NAME  INF AP  

P_A_CMU6_1  0.0482  
P_A_CMU5_2  0.0393  

 
 
Future work 
In our opinion, a promising direction is to learn the concept correlation from the data on which the 
labels are propagated. In addition, we plan to extend the propagation idea to another perspective 
i.e. to enhance a frame concept prediction by those in the same video clip. 
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1 Introduction
We present a generic event detection system evaluated in the SED task of TRECVID 2012. It
consists of two parts: the retrospective system and the interactive system. The retrospective system
uses MoSIFT [2] as low level feature, Fisher Vector encoding [1] to represent samples generated
by sliding window approach and linear SVM for event classification. For interactive system, we
introduce event-specific visualization schemes for efficient interaction and temporal locality based
search method for user feedback utilization. Among the primary runs of all teams, our retrospective
system ranked 1st for 4 / 7 events, in terms of actual DCR.

2 Fisher Vector Encoding for Retrospective Event Detection
2.1 Framework
We use MoSIFT as our low level feature and Fisher Vector encoding (FV) to represent detection
windows upon MoSIFT. Then, linear SVM is used to train classification model based on annotated
positives and randomly sampled negatives. For testing, multiscale detection is applied and non-
maximum suppression is used to exclude duplicate detections on single event.

2.2 Fisher Vector Encoding
Fisher Vector encoding utilizes a Gaussian mixture model (GMM) Uλ(x) =

∑K
k=1 πkuk(x) trained

on local features of a large image set using Maximum Likelihood (ML) estimation. The parameters
of the trained GMM are denoted as λ = {πk, µk,Σk, k = 1, · · · ,K}, where {π, µ,Σ} are the prior
probability, mean vector and diagonal covariance matrix of Gaussian mixture respectively. This
GMM is used for description of low level feature.

Then for a set of low level features X = {x1, · · · , xN} extracted from a clip of videos y,
the soft assignments of the descriptor xi to the kth Gaussian components γik is computed by:
γik = πkuk(xi)∑K

k=1 πkuk(xi)
. And the FV for X is denoted as φ(X) = {u1, v1, · · · , uK , vK} while uk

and vk is defined as uk =
∑N

i=1
1

N
√

πk
γik

xi−µk

σk
and vk =

∑N
i=1

1
N
√

2πk
γik[ (xi−µk)2

σ2
k

−1] while σk

are square root of the diagonal values of Σk. The FV has several good properties: (a)Fisher Vector
encoding is not limited to computing visual word occurrence. It also encodes additional the distri-
bution information of the feature points, which will perform more stable when encoding a single
feature point. (b) Fisher Vector encoding is not limited to computing visual word occurrence. It also
encodes additional the distribution information of the feature points, which will perform more sta-
ble when encoding a single feature point. (c) it can naturally separate the video specific information
from the noisy local features(b) we can use linear model for this representation. We build efficient
implementation for FV which can reach the speed of 10 times faster than real time.

Power Normalization and L2 Normalization: It is easy to observe that as the number of Gaus-
sians increases, Fisher vectors become sparser so that the distribution of features in a given dimen-
sion becomes more peaky around zero. As introduced in [1], we also use a combination of power
normalization and l2 normalization for each fisher vector encoding features. Suppose z is one di-
mension of the φ, the power normalization is defined as f(z) = sign(z)|z|α where 0 ≤ α ≤ 1 is a
parameter of the normalization and we choose α = 0.5 in all the experiments and then followed by
l2 normalization.

∗Equal contributions by Yang Cai and Qiang Chen



(b)(a) (c)

Figure 1: Illustration of visualization schemes. (a) is using ”Many low-resolution units” for ”PersonRuns”, (b)
is using ”Few high-resolution units” for ”CellToEar” and (c) is using ”Contextual units” for ”PeopleSplitUp”.

2.3 Efficient Implementation
Compared with standard BoW, the computation cost of FV is much fewer. For BoW, the computation
mainly comes from the Vector Quantization(VQ) step which has the complexity ofO(NDM) where
N is the number of local features, D is the dimensionality of local feature and M is the codebook
size. For FV, the cost has two part that one part is the GMM assignment calculation γik which has
complexity ofO(NDK) where K is the GMM model size, another part is the FV calculation which
often takes much less time than the first part(usually ≤ 1%). Then we can see that since we usually
use much less number of Gaussians for FV (usually 128 or 256) than the number of visual words for
BoW (usually a few thousands) the computation for FV is very highly efficient compared to standard
BoW. The experiment shows that our implementation can produce the FV 10 times faster that real
time excluding the local feature extraction part cost.

2.4 Multiscale detection and Non-maximum suppression
Ideally, we need to search over different scales and different step size to locate the exact event in the
video sequences. However, it is unpractical for current sliding window framework. For example, the
maximum length of PersonRuns event in the Dev dataset is 1000 frames while the minimal length
is 10 frames – such diversity of event duration brings a lot of search space and the computation cost
is too high. Instead of this exhaustive search, we select three scales which are closest to the average
duration of each event and accept the scale with best performance.

NMS is widely used in many computer vision tasks, e.g. edge detection or object detection. In
SED task, NMS will set all scores in the current neighborhood window that are lower than the
maximum value in that window to zero (or lowest value).The current score of the sliding window is
then compared to this maximum value. If lower it is set to zero otherwise the value is unchanged.
We use NMS to suppress the multiple detection for single event.

3 Interactive Event Detection System
We attempted to address two central problems of an interactive surveillance event detection system:
(1) detection results visualization and (2) user feedback utilization. Because of the limited time
available for interaction, the system design was driven by efficiency considerations from both these
two perspectives. Specifically, in this year system, we proposed two techniques for the two aspects
respectively, which are introduced as follow.

3.1 Event-specific Detection Results Visualization
In a surveillance video where tens or even hundreds of people appear simultaneously in one camera,
it’s not surprising to take one several minutes to verify a correct event detection. To help user more
efficiently capture video content, we experimented with several presentation schemes and designed
an event-specific visualization approach by finding good presentation schemes for different events.

We define a single detection result as a visualization unit or unit. In our interactive system, a unit
is presented by repeatedly playing the detected video segment at twice original speed. Given the
limited space of a screen and the limited perception ability of an user, the problem then turns to
how to arrange these units to better trade-off the visualization quantity (e.g. the number of units
in one screen) and visualization quality (e.g. the clearness of each unit). We specifically explored
following three presentation schemes.

Many low-resolution units: As shown in Figure 1(a), we presented multiple low-resolution units
in a screen. It leveraged the fact that users can simultaneously capture the rough content of multiple
units. Due to the roughness of such simultaneous capture, it’s only favored by events which can
be captured by a glance, such as ”PersonRuns”. For other sophisticated events, however, it doesn’t
benefit the performance due to low-resolution units.

Few high-resolution units: Due to the impreciseness of previous scheme, we presented the units
with higher resolution at the expense of fewer units in a screen (see Figure 1(b)). This presentation



0

0.05

0.1

0.15

0.2

0.25

[0
,1

0
0
)

[1
0
0
,2

0
0
)

[2
0
0
,3

0
0
)

[3
0
0
,4

0
0
)

[4
0
0
,5

0
0
)

[5
0
0
,6

0
0
)

[6
0
0
,7

0
0
)

[7
0
0
,8

0
0
)

[8
0
0
,9

0
0
)

[9
0
0
,1

0
0
0
)

[1
0
0
0
,1

1
0
0
)

[1
1
0
0
,1

2
0
0
)

[1
2
0
0
,1

3
0
0
)

[1
3
0
0
,1

4
0
0
)

[1
4
0
0
,1

5
0
0
)

[1
5
0
0
,1

6
0
0
)

[1
6
0
0
,1

7
0
0
)

[1
7
0
0
,1

8
0
0
)

[1
8
0
0
,1

9
0
0
)

[1
9
0
0
,2

0
0
0
)

[2
0
0
0
,2

1
0
0
)

[2
1
0
0
,2

2
0
0
)

[2
2
0
0
,2

3
0
0
)

[2
3
0
0
,2

4
0
0
)

[2
4
0
0
,2

5
0
0
)

[2
5
0
0
,2

6
0
0
)

[2
6
0
0
,2

7
0
0
)

[2
7
0
0
,2

8
0
0
)

[2
8
0
0
,2

9
0
0
)

[2
9
0
0
,3

0
0
0
)

[3
0
0
0
,3

1
0
0
)

[3
1
0
0
,3

2
0
0
)

[3
2
0
0
,3

3
0
0
)

[3
3
0
0
,3

4
0
0
)

[3
4
0
0
,3

5
0
0
)

[3
5
0
0
,3

6
0
0
)

[3
6
0
0
,3

7
0
0
)

[3
7
0
0
,3

8
0
0
)

[3
8
0
0
,3

9
0
0
)

[3
9
0
0
,4

0
0
0
)

[4
0
0
0
,4

1
0
0
)

[4
1
0
0
,4

2
0
0
)

[4
2
0
0
,4

3
0
0
)

[4
3
0
0
,4

4
0
0
)

[4
4
0
0
,4

5
0
0
)

[4
5
0
0
,4

6
0
0
)

[4
6
0
0
,4

7
0
0
)

[4
7
0
0
,4

8
0
0
)

[4
8
0
0
,4

9
0
0
)

[4
9
0
0
,5

0
0
0
)

P
e

rc
e

n
ta

g
e

Interval Size (frame)

PersonRuns

CellToEar

ObjectPut

PeopleMeet

PeopleSplitUp

Embrace

Pointing

Figure 2: Distribution of frame intervals between each consecutive events pair in SED development set.

scheme is helpful for events whose action is small, weak and always lying in a tiny sub-region of
the whole frame, such as ”CellToEar”, ”ObjectPut” and etc.

Contextual units: Instead of only presenting the unit corresponding to a detection result, this
scheme also presented the contextual units, which are neighbor windows next to the detection. It
helped the verification of slightly drifted true positives. The middle unit of Figure 1(c) shows an
slightly drifted detection of ”PeopleSplitUp”, which started with a person walking away from an
airport agent. Since it missed the moment they were together, it’s very hard for user to judge if the
detection is a true positive or a false alarm. However, by providing at the context (the first and third
units in Figure 1)(b), the problem can be easily solved.

Even different events favor different presentation schemes, in practice, we didn’t use only one for
the interaction of curtain event. Because the good presentation scheme for a event is just in general
sense and unnecessarily true for all specific cases (e.g. children’s running may also need detailed
looking). In the interactive system for this year submission, we organized these schemes into one
integrated interface.

3.2 Temporal Locality Based Search
By analyzing the distribution of events in temporal domain, we observed an interesting ”clustered”
distribution pattern for some events. To see this, we calculated the frame intervals between each
consecutive events pair in a video and then counted the numbers of pairs dropping into quantized
interval bins. In Figure 2 which visualizes the interval distribution, we can easily see that, for some
events (e.g. Pointing, ObjectPut and etc.), most of the intervals are very small, which indicates an
clustered distribution of them. In other words, if we see an event at somewhere, we are likely to see
another one near to it. Based on such temporal locality, we proposed a interactive searching method
focusing on saving miss detections.

Let dt be a system detection whose middle frame is t. Let D be a set of system detections. Let δt be
a predefined short interval. When user labeled one system detection dt as true positive, the temporal
locality search method retrieves a set of neighbor detections D = {dt′ ||t

′ − t| < δt} to users. Then
user can quickly go through the list and search for miss detections.

4 Experiments
4.1 Evaluation of Retrospective Event Detection
Experimental Setting: For an ideal event detection framework, we focus on the efficiency and
effectiveness of training and testing stages. For training stages, we use Fisher Vector encoding as
the representation of video events which allows us to use linear classifier to obtain efficiency and
good performance. We first trained a GMM model with 256 codebooks. Each MoSIFT feature
is first reduced to 80 dims using PCA. No SPM is utilized in this year. The final dimension is
2 × 80 × 256 = 40960. We perform hard samples mining on the training set so that the learned
classifier is more generalized. 2-fold cross validation is used to obtain the thresholding of final
output. At testing stages, ideally, exhaustive search over temporal space should be utilized. However,
two factors avoid this: (1) high cost for dense search. (2) unbalanced output at different scales. Thus,
we calculated the mean temporal duration of each events and select 30, 60, 120 as the testing frame
windows and select best performance window size as the final result. Since DCR evaluation is
highly nonlinear, we also perform threshold prediction in which we use topK threshold and min
DCR threshold on the training set as observation to predict the final best thresholds for DCR.

Results: We show our primary run result using Fisher Vector encoding (CMU12 FV) on retrospec-
tive task in Table 1 compared with the results of CMU Bag-of-Words of last year (CMU11 BoW)
and the other teams’ best primary run results this year (Others12 Best). Please note the test video
of 2012 is a subset of last year’s. It is shown that our CMU12 FV is better than CMU11 BoW. We
had similar observation in our experiments on development set. In terms of the actual DCR, our



Table 1: The actual DCR and minimum DCR comparisons of primary runs among CMU12 FV,
Others12 Best and CMU11 BoW.

CMU12 FV Others12 Best CMU11 BoW
Rank ActDCR MinDCR ActDCR MinDCR ActDCR MinDCR

CellToEar 1 1.0007 1.0003 1.0040 0.9814 1.0365 1.0003
Embrace 1 0.8000 0.7794 0.8247 0.8240 0.8840 0.8658
ObjectPut 2 1.0040 0.9994 0.9983 0.9983 1.0171 1.0003

PeopleMeet 3 1.0361 0.9490 0.9799 0.9777 1.0100 0.9724
PeopleSplitUp 1 0.8433 0.7882 0.9843 0.9787 1.0217 1.0003

PersonRuns 1 0.8346 0.7872 0.9702 0.9623 0.8924 0.8370
Pointing 3 1.0175 0.9921 0.9813 0.9770 1.5186 1.0001

Table 2: The actual DCR comparision between different interaction stategies on development set
and evaluation set.

Development Set Evaluation Set
Retro Naive ESpecVis ESpecVis+TLRerank Retro ESpecVis+TLRerank

CellToEar 1.0008 1.0014 1.0008 1.0009 1.0007 1.009
Embrace 0.9519 0.9547 0.9344 0.9115 0.8 0.6696
ObjectPut 1.0033 1.0026 1.0024 1.0023 1.004 1.0064

PeopleMeet 0.9381 0.9338 0.9334 0.9361 1.0361 0.9786
PeopleSplitUp 0.8972 0.9416 0.889 0.8863 0.8433 0.8177

PersonRuns 0.761 0.7528 0.7511 0.7366 0.8346 0.6445
Pointing 1.0168 1.0109 1.0134 1.0084 1.0175 0.9854

system achieved best performance in four events this year. It shows good results on ”PersonRuns”,
”PeopleSplitUp”, ”Embrace” and ”PeopleMeet”, while in other tasks the results are still close to
random. Other localized method should be used to tackle these failure tasks.

4.2 Evaluation of Interactive Event Detection
Experimental Setting: Besides reporting the formal evaluation results provided by NIST, we also
included the developing experimental results, to exam the effectiveness of proposed interaction
methods. Specifically, in our developing experiments, we used ”Dev08” as training and ”Eval08”
as testing. Instead of using the 25 minutes interaction walltime of formal evaluation setting, the
developing experiments used an interaction walltime of 5 minutes for each event. In table 2, we
compared the actual DCR on development set and evaluation set (primary runs) for 4 interaction
strategies: (1)no interaction (Retro), (2)scanning system detections only with ”many low-resolution
units” visualization discussed in Section 3.1 (Naive), (3)scanning system detections using event-
specific visualization (ESpecVis) and (4)scanning system detections using both event-specific visu-
alization and temporal locality search (ESpecVis+TLSearch).

Results: In developing experiments, compared to Retro, Naive only shown significant improve-
ments on event ”PersonRuns” which is very easy to identify. On other events, the performance
even dropped dramatically (e.g. ”PeopleSplitUp”) after this naive interaction. By adopting the
better event-specific visualizations, ESpecVis shown improvements over Retro on more events than
Naive. Specifically, for events ”Embrace” and ”PeopleSplitUp” which Naive didn’t do well, ES-
pecVis demonstrated performance gain by providing high resolution visualization and event context.
By further adding temporal locality search, we observed larger improvements on ”PersonRuns” and
”Embrace” for ESpecVis+TLSearch compared with ESpecVis. Since the these events shown relative
high temporal locality as demonstrated in Figure 2, the temporal locality search has high probability
to save miss detections. However, we also found the current interaction techniques were not effec-
tive on some events, such as ”CellToEar” and ”ObjectPut”. There are two-fold reasons. First of all,
the current visualization method still has difficulty in presenting these events with tiny and weak
actions, especially in complected scenes. Secondly, one necessary condition for temporal locality
search to be effective is user can find some true positives during interaction. Since the retrospective
system still cannot get reasonable detections on these events, the proposed temporal locality cannot
benefit the performance much.

As for formal evaluation, it basically shared the same performance changing trends of the one on
development set. Due to the the longer interaction time (25 minutes) used in formal evaluation, we
observed greater improvement in terms of absolute values.
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