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ABSTRACT
ORAND is a Chilean company focused on developing ap-
plied research in Computer Science. This paper describes
the participation of the PRISMA-ORAND team for the In-
stance Search task (INS) at TRECVID 2012.

Currently, the most common technique used to address
the Instance Search problem is the codebook approach or
some extension of it. In our participation we preferred a
different approach which consisted in retrieving k nearest
neighbors (k-NN) for each query descriptor on the full set
of descriptors instead of computing a codebook. In order
to efficiently solve the k-NN searches in large datasets we
perform several parallel approximate searches using the open
source project P-VCD and the Amazon Elastic Compute
Cloud (EC2) service.

We submitted four Runs to TRECVID 2012 INS task,
namely: prisma-two180px, prisma-four90px, prisma-two90px,
and prisma-one180px. In general, these Runs achieve satis-
factory performance as their MAP are higher than the me-
dian of all the Runs in most of the topics. Additionally,
we tested a fifth Run prisma-two280px by increasing both
number of descriptors and search accuracy. This last Run
demanded higher computational power to solve the k-NN
searches but it highly improved the effectiveness compared
with initial four Runs.

The performance achieved by the presented approach
shows some promising results. It presents an alternative
to codebook approaches that can achieve satisfactory re-
sults in the Instance Search problem. The parallelization
and approximation enable to solve k-NN searches in large
datasets achieving high effectiveness. However, more re-
search is needed in order to determine the potential per-
formance that can be reached by k-NN searches compared
to codebook approaches.

1. INTRODUCTION
ORAND is a Chilean software company focused on de-

veloping applied research in Computer Science. This paper
describes our work for the Instance Search task (INS) at
TRECVID 2012. This work is the progression of the re-
search developed by PRISMA team (University of Chile)
since TRECVID 2010 [5, 7].

TRECVID is an evaluation sponsored by the National In-
stitute of Standards and Technology (NIST) with the goal
of encouraging research in video information retrieval [15].

Instance Search task (INS) is part of TRECVID since 2010.
Given some visual examples of an entity (person, object or
location), a system must return a list of videos where the
entity appears. Each visual example contains a mask out-
lining the relevant zone of the image (the region where the
entity appears in the example). INS 2012 evaluated 21 top-
ics (one person, 15 objects and 5 locations) with an average
of 4.9 images per topic, on a reference video collection of
74,958 videos with a total extension of 188 hours (19 mil-
lion frames). The object topics consisted in 6 trademark
logos and 9 buildings. This differs with last year’s evalu-
ation which considered more persons (6), wider variety of
objects (e.g., tortoise, fork, plane, car, etc.), and less visual
examples (an average of 3.8 images per topic) [13].

Currently, the most common approach used to address the
Instance Search problem is the well-known Bag-of-Visual-
Words or codebook approach. It was introduced as a tech-
nique to perform efficient similarity searches in large video
collections [14]. This approach is grounded on construct-
ing a codebook or “visual vocabulary” in order to represent
the local descriptors in videos. Briefly, the approach follows
these steps: first, it extracts local descriptors from a sample
of video frames. Second, it defines the codebook as the set
of k centroids computed by a clustering algorithm on the
extracted descriptors. In this step, the k-means algorithm
is usually preferred due to its high efficiency at processing
large sets of vectors. Finally, the codebook is used to pro-
duce a brief description for each frame by quantizing each
local descriptor to its nearest centroid.

Using the codebook, the efficiency can be highly improved
by constructing an inverted index. The inverted index en-
ables the perform similar searches in “immediate run-time”
by retrieving collisions (local descriptors assigned to the
same centroid) between frames. Many systems based on
the codebook approach have achieved high performance at
Instance Search and other TRECVID’s tasks as well as other
related problems like video classification, copy detection,
event detection, object recognition, etc.

Two main issues arise when following the codebook ap-
proach: the high computational cost required by the code-
book creation, and the loss of information due to quanti-
zation. Many techniques has been developed to improve
the performance of the codebook computation and/or to in-
crease the information calculated from the local descriptors
in a frame, e.g. soft assignment (instead of hard assignment
to the nearest centroid) [16], hamming embedding [10], spa-
tial pyramids [11], histogram of distances by codeword [4],
hierarchical k-means [12], and many others.



Unlike the codebook approach, in this work we follow
the k-NN approach on the full set of descriptors without
computing any codebook nor quantizing local descriptors.
We are interested in studying the effectiveness that can be
reached when no quantization is applied to local descriptors.
In this case, the main issue that we needed to address is to
efficiently solve a large amount of k-NN searches in a large
set of vectors. In order to address that issue, we perform
several parallel approximate searches using P-VCD [2] and
Amazon Elastic Compute Cloud (EC2) [1].

P-VCD is an open source project that implements dif-
ferent feature extraction methods, interfaces with external
feature extraction methods, and implements exact [8] and
approximate [6] k-NN searches following the metric space
approach [17]. Amazon EC2 is a service that enables to eas-
ily create an arbitrary number of virtual machines, called
instances or nodes.

2. INSTANCE SEARCH PARTICIPATION
In our participation we studied the detection performance

that can be achieved by a system using local descriptors
without applying any quantization nor codebook. We con-
trol the amount of local descriptors to search in by sampling
video frames at a fixed rate and by shrinking each video
frame to a fixed height. Visual samples are also scaled to
the same height.

The set of local descriptors for the visual samples corre-
sponds to the query set Q, and the set of local descriptors
for the reference video collection corresponds to the search
space R. Therefore, the search process aims to retrieve for
each vector in Q the k nearest neighbors in R. However, due
to the size of the video collection, comparing every vector in
Q with every vector in R drives to an unaffordable search
time.

The efficiency (search time) can be improved by reduc-
ing Q and R and by using approximate searches. However,
as shown below, in order to spend a reasonable search time
in a single machine, the parameter values for sampling rate,
frame size, and search approximation produce a setup which
effectiveness (MAP) is practically ruined. In order to in-
crease effectiveness, we solved similarity searches using many
temporary virtual machines rented from Amazon EC2. This
allowed us to reach a setup with higher effectiveness without
compromising the efficiency.

As a general overview, our approach follows these steps:
the video dataset is partitioned into subsets of videos and
each one is assigned to a different machine in order to pro-
cess them in parallel. Each machine computes the set of de-
scriptors by extracting local descriptors from video frames
sampled at a regular-step, and then computes an index (piv-
ots) for its local dataset. For each local descriptor in a query
image, each machine resolves in parallel a partial approxi-
mate k-NN search using the P-VCD software. The partial
results are merged and the video candidates are calculated
according to the number of nearest neighbors located for
each query image. Finally, the results of different descrip-
tors are combined by score aggregation of candidates.

We submitted four Runs, namely: prisma-two180px,
prisma-four90px, prisma-two90px, and prisma-one180px. Ad-
ditionally, we create an extra Run (not submitted to evalu-
ation) called prisma-two280px, which is essentially identical
to prisma-two180px but with higher sampling rate and frame
size. A summary for these Runs is shown in Table 1 and Ta-

ble 2.

2.1 Sampling and Feature Extraction
Every video in the reference video collection was processed

in order to extract representative keyframes. We tested
three sampling rates:

• One frame every 5 seconds. This rate selects 142,749
frames for the whole reference video collection.

• One frame every 1.5 seconds. This rate selects 479,492
frames for the whole reference video collection.

• One frame every 0.5 seconds. This rate selects
1,398,505 frames for the whole reference video collec-
tion.

For each selected frame we extracted local descriptors us-
ing the FeatureSpace software [3]. The keypoints detectors
were Hessian-Laplace and MSER (Maximally Stable Ex-
tremal Regions). In order to control de number of keypoints,
each frame was scaled down to height 90, 180 or 280 pixels,
and the width was fixed accordingly to the aspect ratio. At
each keypoint we extracted SIFT (Scale-Invariant Feature
Transform, 128-d) descriptors and/or CSIFT (Color SIFT,
192-d) descriptors:

• SH: SIFT descriptor at Hessian-Laplace keypoints.

• SM: SIFT descriptor at MSER keypoints.

• CH: CSIFT descriptor at Hessian-Laplace keypoints.

• CM: CSIFT descriptor at MSER keypoints.

The sampling rate, frame size, and feature extraction
method used by each Run are summarized in Table 1.

2.2 Similarity Searches
On the query side (Q), we extracted descriptors from

query images and flipped versions. On the reference side
(R), we extracted descriptors at sampled frames from ref-
erence videos. Then, for each vector in Q we performed
a k-NN search to retrieve its k=50 nearest neighbors in R
according to distance:

L1(~x, ~y) =

d∑
i=0

|xi − yi|

Table 2 summarizes the number of vectors for Q and R
involved for each Run. For instance, prisma-one180px re-
quired to solve 75,236 searches in a dataset of 166,431,407
vectors of 192-d, and prisma-two280px required to solve
155,138 searches in 973,691,517 vectors plus 94,050 searches
in 542,942,624 vectors of 192-d. Given these sizes, a brute-
force search (i.e., linear scan) becomes unfeasible.

The reference set R is partitioned into n subsets
{R1, ...,Rn}, where:

R =

n⋃
i=1

Ri

∀ i 6= j,Ri

⋂
Rj = ∅

Each subset is assigned to an Amazon EC2 node, and each
node performed the approximate search between Q and Ri.



Run Sampling Rate Frame Height Descriptor MAP
[sec.] [pix.]

∗prisma-two280px 0.5 280 CH+CM 0.210
prisma-two180px 1.5 180 CH+CM 0.155
prisma-one180px 1.5 180 CH 0.140
prisma-two90px 5 90 CH+SH 0.103
prisma-four90px 5 90 CH+CM+SH+SM 0.094

∗ extra run (not submitted).

Table 1: Summary of features extracted to reference videos.

Run Q [∗103] R [∗106] EC2 nodes T MAP
∗prisma-two280px 155 + 94 973 + 543 120 1% 0.210
prisma-two180px 75 + 44 166 + 95 20 0.5% 0.155
prisma-one180px 75 166 10 0.5% 0.140
prisma-two90px 22 + 22 15 + 15 1 1% 0.103
prisma-four90px 22 + 15 + 22 + 15 15 + 9 + 15 + 9 1 0.5% 0.094

∗ extra run (not submitted).

Table 2: Summary of vectors involved in the approximate searches.

Once completed all the partial searches, the final result is
created by merging the partial results.

The approximate search is an adaptation of the approxi-
mate search with pivots [6] to local descriptors. This search
first selects P vectors from Ri and calculates their distance
to every other vectors in Ri. During the search, for any
two vectors q ∈ Q and r ∈ Ri an estimation of L1(q, r) is
calculated using the triangle inequality:

L1(q, r) ≈ max
p∈P
|L1(q, p)− L1(p, r)|

The search used |P|=5 pivots (selected by the SSS al-
gorithm [9]) and the approximation parameter T shown in
Table 2. Each distance estimation cost only 5 operations
(instead of the 192 operations for CSIFT vectors). There-
after, for the T · |Ri| vectors with lowest estimations the
real L1(q, r) is calculated, and the k=50 nearest neighbors
are located.

2.3 Locating candidates
Given a topic, a similarity search is performed for each

descriptor in each query image. Given the query descriptor
q, its k-NN in R are located. Every NN sums one vote to
the reference video that owns it. The vote is weighted by 2
if q resides inside the mask, and is weighted by 1.5 is q is
close to the mask (i.e., q resides in the mask dilated by a
5x5 kernel). The candidate videos with more votes produce
the final result sorted by score (total sum of votes).

For Runs with multiple descriptors, an independent search
is performed for each kind of descriptor, and the candidate
videos from each modality are combined by score aggrega-
tion (i.e., late fusion).

The final candidates are sorted from maximum to mini-
mum score and the top 1000 scores are reported.

3. RESULTS ANALYSIS
The evaluation of a Run relies on calculating the precision

at the ranks where each correct answers is located. For each
topic the average precision (AP) is computed, and the mean

average precision (MAP) for the whole run is calculated.
Additionally, each submission must report the time spent
in processing each topic. Two kinds of submissions were
evaluated: interactive (where a user can correct the results
and give feedback to the system), and automatic (where the
system gives the results without user interaction). Our sub-
missions are automatic, hence we compare the performance
against the other automatic submissions.

Twenty-four teams participated in the evaluation. Each
team submitted at most four Runs, which resulted in 85
submissions: 6 interactive and 79 automatic. The results
show this year the task was really difficult. In fact, MAP
for the top performing system dropped from more than 0.53
last year to less than 0.27 this year.

Table 1 and Table 2 show the MAP four our submissions,
which range from 0.094 up to 0.210. Figure 1 compares
these MAP values with all the automatic Runs submitted
to evaluation. The results show the high impact of sampling
rate and frame size in the MAP, which is directly correlated
with the resources needed to solve similarity searches. In
fact, prisma-two90px and prisma-four90px have small sets Q
andR, thus the search can be solved on a single machine, but
they both achieve a MAP near the median (ranks 37th and
39th, respectively). Using parallelism it is possible to tackle
larger search spaces: prisma-one180px and prisma-two180px
achieve higher MAP (ranks 24th and 18th, respectively) but
they require more computational resources (10 and 20 nodes
in parallel were used, respectively).

An interesting result is that prisma-two280px achieve near
the highest MAP (4th of 79). This result proves that k-NN
searches can indeed achieve as high effectiveness as code-
book approach. However, this Run demanded even more
computational resources (120 nodes in parallel were used).

Regarding results by topic, Table 3 and Figure 2 compares
the AP for our best Runs with the maximum AP and median
AP at every topic. We achieved top result for 9061 (Pepsi
logo), a near-top for 9063 (Prague Castle), and above or in
the median for the others.

In general, the approach shows promising results. The
results prove it is possible to address the Instance Search
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Figure 1: Global results for all the automatic submissions.



Topic Max Median prisma-one180px prisma-two180px prisma-two280px∗

AP AP AP # AP # AP #

9048 - Mercedes star 0.115 0.000 0.003 7th 0.001 17th 0.000 30th

9049 - Brooklyn bridge tower 0.319 0.004 0.036 14th 0.038 12th 0.077 8th

9050 - Eiffel tower 0.370 0.033 0.123 17th 0.136 15th 0.188 11th

9051 - Golden Gate Bridge 0.633 0.107 0.053 51th 0.249 21th 0.292 18th

9052 - London Underground logo 0.310 0.009 0.053 21th 0.130 11th 0.309 2th

9053 - Coca-cola logo - letters 0.500 0.005 0.015 31th 0.066 18th 0.185 10th

9054 - Stonehenge 0.166 0.000 0.019 14th 0.022 13th 0.016 15th

9055 - Sears/Willis Tower 0.172 0.042 0.121 14th 0.086 17th 0.121 15th

9056 - Pantheon interior 0.820 0.463 0.591 28th 0.588 29th 0.679 16th

9057 - Leshan Giant Buddha 0.383 0.204 0.248 28th 0.265 23th 0.363 2th

9058 - US Capitol exterior 0.556 0.043 0.058 33th 0.074 27th 0.175 15th

9059 - baldachin in Saint Peter’s Basilica 0.717 0.009 0.009 40th 0.014 38th 0.157 14th

9060 - Stephen Colbert 0.761 0.529 0.625 24th 0.583 30th 0.583 31th

9061 - Pepsi logo - circle 0.042 0.000 0.004 5th 0.042 1th 0.045 1th

9062 - One World Trade Center building 0.360 0.001 0.041 15th 0.046 11th 0.043 14th

9063 - Prague Castle 0.254 0.022 0.253 2th 0.241 3th 0.258 1th

9064 - Empire State Building 0.084 0.001 0.002 20th 0.001 24th 0.001 42th

9065 - Hagia Sophia interior 0.588 0.043 0.478 7th 0.459 8th 0.578 2th

9066 - Hoover Dam exterior 0.318 0.001 0.002 35th 0.005 27th 0.010 25th

9067 - MacDonald’s arches 0.200 0.000 0.000 12th 0.000 12th 0.000 12th

9068 - PUMA logo animal 0.491 0.155 0.208 32th 0.212 31th 0.329 10th

MAP 0.268 0.093 0.140 24th 0.155 18th 0.210 4th

Table 3: Results per topic for prisma-one180px, prisma-two180px, and prisma-two280px∗.
∗ extra run (not submitted).
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problem without using codebooks. Moreover, resolving k-
NN searches in large search spaces it is possible to outper-
form many codebook-based systems.

4. CONCLUSIONS
In this work we present an alternative approach to code-

books that can achieve high effectiveness at the Instance
Search problem. It is based on performing k-NN searches
for local descriptors without applying any quantization. In
order to achieve high efficiency and effectiveness we pro-
cessed a large video collection using many virtual machines
and performing several parallel approximate searches. We
tested our approach using the Amazon Elastic Compute
Cloud (EC2).

The achieved results prove the presented approach can
achieve high effectiveness, hence it is a valid alternative to
address the Instance Search problem. The main issue that
arises with k-NN searches is that it requires high compu-
tational resources during the online phase, unlike codebook
approach which requires high computational resources dur-
ing the offline phase.

After analyzing our results a research question directly
arises: if we had sufficiently high computational re-
sources, would k-NN searches outperform codebooks in large
datasets? or would codebook approach still be preferable?
Unfortunately, the results shown in this work are not con-
clusive and the dataset was not ideal to answer this ques-
tion. Hence, more research is needed in order to understand
the features that are captured and the topics that can be
detected by following the k-NN searches and codebook ap-
proaches.

P-VCD is an open source software with GPL license writ-
ten in C. It was originally designed as an engine for content-
based video copy detection system, and now we have ex-
tended it to address the Instance Search problem. Its devel-
opment is currently supported by ORAND. The project is
still immature, but we encourage researchers and advanced
users to test its performance.
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