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Abstract

We present an interactive video event detection system
for the TRECVID 2012 Surveillance Event Detection (SED)
task [16]. Inspired by previous TRECVID submissions, the
underlying approach is built on combining automated de-
tection of temporal regions of interest through the extrac-
tion of binary spatio-temporal keypoint descriptors in ob-
served video-sequences (Video Analytics module), and effi-
cient manual filtering of false alarms through the use of a
custom-designed graphical user interface (Visual Analytics
module). We make the automated detection of temporal re-
gions of interest feasible by using efficient binary feature de-
scriptors. These descriptors allow for descriptor matching
in the bag-of-words model to be orders of magnitude faster
than traditional descriptors, such as SIFT and optical flow.
The approach is evaluated on a single task, PersonRuns, as
defined by the TRECVID 2012 guidelines. The combination
of Visual Analytics and Video Analytics tools is shown to be
essential for the success of a highly challenging task of de-
tecting events of interest in unstructured environments using
video surveillance cameras.

∗This work is done within the CBSA-led PSTP BTS-402 project
PROVE-IT(VA) funded by the Defence Research and Development
Canada (DRDC) Public Security Technical Program (PSTP). Project lead:
Dmitry Gorodnichy (email: Dmitry.Gorodnichy@cbsa-asfc.gc.ca).

1. Introduction

1.1. Operational need

As a result of the increasingly growing demand for se-
curity, many countries have been deploying video surveil-
lance (CCTV) systems as an important tool for enhanc-
ing preventive measures and aiding post-incident investiga-
tions. Within the Canadian government, many federal de-
partments heavily use CCTV systems, including the Canada
Border Services Agency (CBSA) who sees video surveil-
lance as a key technological element in protecting the coun-
try’s borders as well as in facilitation of travel of legitimate
people and goods through the border.

When deployed, CCTV systems are used in either of two
modes of operation: a) Live mode (or real-time monitor-
ing), and b) Archival mode (or post-event analysis through
recordings). While evaluating the utility of these systems, it
has been realized that currently deployed surveillance sys-
tems are not fully efficient for either modes of operation.
In the real-time monitoring mode, the problem is that an
event may easily pass unnoticed due to false or simultane-
ous alarms and a lack of time required to rewind and analyze
all potentially useful video streams. In archival mode, video
data storage and manageability is the problem that compli-
cates the efficiency of post-incident investigation the most.
Due to the temporal nature of video data, it may take very
long for a human to analyze it. A way to resolve these prob-
lems is seen in designing automated video analytic tools,
which would help a security or investigation officer to do the



Data length (L) # events (N)
original video Lg=15hours Ng=107 (ground truth)

detected by computer Lm=2016*2secs Nm=2016 (TP+FP)
detected by human Lh =25mins Nh=15 (6+9)

Figure 1. Formalization of the video analysis problem: Given
`g minutes of video footage, which contains Ng events (ground
truth), the objective is to design such Video Analytics software and
such Visual Analytics interface that would allow a human opera-
tor to detect the maximum number of events Nh in not more than
Ln minutes (operational contraint). The table shows the length of
video data and the number of events used/obtained/estimated in
the current SED task: of original video data, data detected using
Video Analytics (by computer) only, and data detected using both
Video Analytics and Visual Analytics (by human).

work more efficiently [11]. The design of such a tool tested
on TRECVID SED video-sequences captured at Gatwick
airport from HomeOffice iLids dataset is presented in this
paper.

1.2. Formalization of the problem

The TRECVID 2012 Surveillance Event Detection
(SED) task can be formalized as as follows (see Figure
1). Given Lg minutes of video footage, which contains Ng

events (ground truth), the objective is to design such a tech-
nology that would allow a human analyst to detect the max-
imum number of events Nh within Lh minutes.

Such a presentation very well represents the actual op-
erational constraint of many agencies, which is the limited
time / human resources available to process the data. It also

highlights an important dual computer-human nature of the
solution defining its two main components: one – executed
by a computer, which uses significant machine power and
time to search for events of interest in a long video sequence
in order to extract the clips corresponding to potential events
of interest (Nm), possibly along with their associated meta-
data; and the other – executed by a human, who further pro-
cesses the data obtained by a computer in order to detect the
true events (Nh) within a given amount of time (Lh).

In particular, it is realized that, regardless of the qual-
ity of a video recognition (Video Analytics) algorithm, it
will not be able to robustly detect events of interest with-
out generating false alarms, the number of which can be
very large in unstructured surveillance environments, such
as those used in the SED task.

Therefore our solution is sought in combining Video An-
alytics advances with the recent advances in Visual An-
alytics, the science of using human’s visual recognition
power for efficient processing of data through the design
of problem-tailored graphical user interfaces. In this way,
the number of machine-generated alarmsNm, which would
take otherwise `m minutes to view, can be further reduced
to Nh alarms which can be viewed Lh minutes.

Specific to the TRECVID 2012 SED task and the results
we obtained (see Figure 1), with the use of our Visual An-
alytic interface we are able to detect Nh = 15 events in
Lh = 25 minutes from the Nm=2016 suspected events de-
tected by our Video Analytics algorithm, the total length of
which is Lm = 2012 ∗ 2 seconds (each event is extracted
as 2 sec clip). While machine detected events Nm consist
of both true and false positives, with the majority (over esti-
mated 95%) being false positives, the human detected event
Nh should 1 predominantly be true positives.

1.3. Previous work

There has been an extensive amount of research in event
detection that is applicable to surveillance environments.
Laptev et al. [14] use 3-dimensional Harris corners as a
spatiotemporal feature detector, where the third dimension
is time. An image patch is deemed to be a keypoint when
sufficient change is present in both spatial dimensions and
the temporal dimension. This method generally detects
keypoints with a strong reversal in the motion direction,
which returns very few keypoints in many domains. Dol-
lar et al. [6] propose a method using Gabor filters in the
temporal domain that tends to return many more keypoints,
by evoking a strong response when varying image intensi-
ties contain periodic frequency components. Gilbert et al.

1As presented in later sections, this is not always true, as in our ex-
periments only 6 of our Nh = 15 manually detected events appeared to
be true, with 9 of them being false, which is likely attributed to the fact
that the length we chose for extracted clips (2secs) was not large enough
to distinguish fast walk from running (especially that of children).



Figure 2. The flow of our event detection system. A pair of frames five (5) frames apart are joined to create an image encoding both motion
and appearance. This new image is used in a bag-of-words model to transform keypoint descriptors into SVM features, which are then
used to compute the likelihood of an event occurring at that frame.

[9] also extend 2-dimensional features into 3 dimensions.
This is achieved by partitioning the 3D space into 3 chan-
nels, (x, y), (x, t), and (y, t) and densely computing Har-
ris corners across these spaces. A 3 digit code is created
for each corner, corresponding to its scale, which channel
it was computed on, and its orientation. The APriori algo-
rithm is used to mine frequently occurring sets of corners
based on this 3-digit code, yielding discriminative features
for classification. While they have reported accurate perfor-
mance, dense sampling is extremely space and time costly
on a dataset as large as the TRECVID corpus. MoSIFT
is a spatio-temporal keypoint descriptor for action recogni-
tion, proposed by Chen et al. [19]. Rather than simply ex-
tending a two-dimensional keypoint into three dimensions,
as was done in [14], MoSIFT is an amalgamation of two
separate two-dimensional descriptors, SIFT [15] and opti-
cal flow. SIFT is used to detect keypoints in the spatial di-
mension, while the magnitude of the optical flow defines
whether there is sufficient motion at those spatial locations
to be used as spatio-temporal keypoints. If there is sufficient
motion, the optical flow descriptor is appended to the SIFT
descriptor to create a descriptor consisting of 256 floating
point values. Using MoSIFT for event detection has seen
success in recent TRECVID proceedings [4, 8, 7]]. Despite
its reported success, MoSIFT remains prohibitively slow for
processing ongoing streams of video data.

To this date, no perfect solution has been realized for
the SED task. There does not yet exist an algorithm which
yields an exact number of true positive responses and no
false positives. However, implementing recently proposed
efficient algorithms as a tool to reduce the computational
load for a human surveillance agent is a very conceivable
task.

In the following section, we present an overview of our
approach to automated event detection. Following that, in
Section 2 we describe an implementation that makes use
of our approach to assist human surveillance agents in ef-
ficiently locating pre-defined visual events in a large cor-
pus of surveillance footage. The use of a Visual Analytics
component is described in Section 3. We follow that up
in Section 4 with the results our approach achieved on the
TRECVID interactive SED 2012 task, and finish with a dis-

cussion in Section 5.

2. Automated detection of events using Video
Analytics

2.1. Approach

Our implementation is an incremental process that can
be visualized in Figure 2. We first compute an interme-
diate image representation by the absolute pairwise differ-
ence frame between two video frames five frames apart.
From this difference frame, we extract several binary spatio-
temporal keypoint descriptors and a bag of words model
is used to assign descriptors from a temporal sequence to
visual words from a precomputed codebook. Finally, this
bag of words representation is passed as a feature to a pre-
trained support vector machine (SVM), yielding a single
SVM response. Over time, these responses yield an SVM
response distribution and sufficiently large local maxima
within that distribution are deemed to be positive events.

2.2. Extracting binary spatio-temporal descriptors

An appearance model that does not sufficiently capture
the discriminative features of an event will fail to provide
the classifier with sufficient detail to accurately detect that
event in a query video sequence. Furthermore, in a video
sequence it is not only the local appearance that is of impor-
tance, the motion model may be equally important. These
models have been thoroughly studied in the computer vi-
sion literature, and many have been successfully applied at
TRECVID. MoSIFT is a successful appearance and mo-
tion model that has been applied in previous iterations of
TRECVID [19]. MoSIFT defines a 256 dimensional feature
vector consisting of 128 floating point values for the local
appearance, via SIFT [15], and 128 floating point values for
the motion, via optical flow. While this descriptor has been
used to achieve state of the art performance at TRECVID,
the descriptors are large and slow to match, making them
unsuitable for use as the evaluation corpus grows with time
and additional camera views. We follow a similar philos-
ophy to the one described by Chen et al. [19], with more
compact and efficient descriptors.



Rather than capturing motion with an expensive optical
flow computation at each detected keypoint, our approach
transforms the current frame by taking the absolute differ-
ence image between the frame and the image 5 frames in the
past. This representation implicitly encodes both appear-
ance and motion simultaneously, providing us with a new
image from which we need only to extract an appearance
descriptor from. For this appearance descriptor, we elect to
use the FREAK descriptor [1], which uses a series of local
binary comparisons to describe a local image patch with a
64 byte binary string. These strings are not only more com-
pact than MoSIFT, but allow for efficient matching with the
hamming distance operation. FREAK descriptors captured
on this difference frame encode both spatial and temporal
information, giving us an informative and efficient descrip-
tor for event detection.

Standard keypoint detection algorithms detect keypoints
solely in a spatial manner. We augment keypoint detec-
tion by running a second check over each detected key-
point. For each detected keypoint, we sum the values in
the corresponding image patch region in the difference im-
age. A high sum in this region indicates significant change
between the paired frames, which increases the likelihood
of true movement in that patch. We normalize the patch for
scale invariance and compute this sum over each detected
keypoint. If the sum exceeds a pre-determined threshold,
the keypoint is accepted. Otherwise, there is not enough
movement within the patch to be useful for event detection,
and the keypoint is discarded.

2.3. Bag of words model

As events are temporal in nature, they should be de-
scribed by a distribution of events over an elapsed time
window. This is achieved by computing a bag of words
representation across a series of frames. For PersonRuns,
we have decided to use 50 frames to describe a potential
event. Therefore, over 50 frames all of our feature descrip-
tors are extracted and assigned to the nearest codeword, a
pre-selected feature determined at training time, often se-
lected by clustering the training descriptors. A histogram
is constructed, where histogram bin i is incremented each
time a descriptor is deemed to be most similar to the ith

codeword. In the end, we normalize this histogram to en-
sure that scenes with more detected keypoints are not over-
accounted for.

Studies have shown [12] that using k-means clustering
to define the codewords for a bag of features codebook of-
ten overfits to the densest region of the feature space, mak-
ing it no better than random cluster selection. Our experi-
ments validated that hypothesis on video action recognition,
leading us to use class-balanced random clusters for visual
codebook selection. Given a training set of features, we ran-
domly select features to be the quantizing codewords, while
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Figure 3. We test whether a peak in the SVM response space is
a detected event by checking the window around that peak for
greater values. In this case (the gray box), there are no greater
peaks and the point would be detected as a PersonRuns event.

ensuring that there is an even proportion of positive features
(features from our target event) and negative features.

2.4. Event detection

A query video sequence will incrementally build new
bag of words features, which can be fed into an SVM to
classify that specific feature. With that in mind, we pose
the event detection problem as the problem of finding large
local maxima in the SVM response space.

Each bag of words feature is encoded as a normalized
histogram. To classify this histogram, we use a support vec-
tor machine with the histogram intersection kernel. For his-
tograms a and b, the histogram intersection kernel is defined
as

K∩(a, b) =

n∑
i=1

min(ai, bi) (1)

Our experiments have shown that the histogram intersec-
tion kernel works as well as the χ2 kernel, and sometimes
yields better performance.

Each of these SVM responses gives a floating point value
corresponding to how likely the feature belongs to the Per-
sonRuns event. The set of all bag of words features over an
interval gives a distribution with several peaks and valleys,
visualized in Figure 3. We are interested in SVM responses
that are much higher than the local neighbourhood of that
specific response. We begin with a single pass over each
response and extract each response xi where xi > τ , for
some threshold τ , xi > xi−1 and xi > xi+1. This leaves
us with a small number of candidate events, the areas with
a direct local peak.



With the subset of candidate events extracted, we final-
ize the PersonRuns decision by centering a window around
each candidate point i with SVM response xi and scan-
ning the distribution in that window to test whether xi is a
window-wise maximum. If it is, then the PersonRuns event
has occurred at location i. The size of the window is rela-
tive to the assumed length of a PersonRuns event. We pre-
viously defined that PersonRuns is a 50 frame event, so the
window would be for 25 frames before and after i. We also
performed experiments with the PersonRuns event being a
25 frame event.

2.5. Training

The Gatwick dataset is used as a source for training
data. As the ground truth is available, all of the Person-
Runs events were extracted from this dataset for use as pos-
itive examples. Each event is processed by computing the
keypoint descriptors as described in Section 2.2. These key-
points are then transformed into bag-of-words features for
use as training examples for the SVM. A similar approach
is taken for the negative examples, where random samples
of the video are taken from any time frame that a Person-
Runs event does not occur. Finally, the features are used to
train an SVM with a modified implementation of LibSVM
[5], with the histogram intersection kernel.

Clusters for the bag-of-words model were selected at
random, as described in Section 2.3. The difference be-
tween k-means clustering and random cluster selection was
negligible in our experiments. When sampling clusters,
we ensured class balance by selecting 500 random clusters
from keypoints from positive event instances and 500 ran-
dom clusters from keypoints among the negative event in-
stances.

3. Filtering false alarms using Visual Analytics
As mentioned in the introduction, a Visual Analytics tool

that allows a human officer to efficiently process the data
displayed on a computer screen is needed in addition to
Video Analytics. Related to the SED task, an interactive
graphical user interface that intelligently organizes detected
events to allow a human to efficiently analyze the events,
deciding whether each detected event is a true positive, is
required.

The Canada Border Services Agency has previously de-
veloped Video Analytics Platform (VAP) [10], that is well
suited to this task (Figure 4). VAP was originally developed
for the testing and integration of third party video analyt-
ics codes with the existing IP-camera based video surveil-
lance infrastructure. A critical feature of this platform is
the Event Browser which is an interactive web application
for displaying detected events according to filtering criteria.
It is designed so that to enable humans to use their Visual
Analytics power in order to be able to efficiently find and

a)

b)

Figure 4. Key idea behind VAP software: a) converting continuous
stream to set of bags of graphically annotated images representing
the potential events of interest, b) the bag of images which are
more likely to be useful are shown to the user first.

extract useful information, while ignoring or discarding the
information that is not useful.

3.1. Making use of human visual recognition power

In “Illuminating the Path” [18], Thomas and Cook de-
fine visual analytics as the science of analytical reasoning
facilitated by interactive visual interfaces. From [2] “The
purpose of visual analytics techniques is to help a human
analyst to understand some data and underlying phenom-
ena. Thus, it can be used in studies of individual move-
ment behaviours, including behaviours of animals.” While
the computer is efficient at processing lots of information
quickly, the human is efficient at quickly making sense of
the information if it is relatively small and well presented.
Visual Analytics is all about showing the data in a format
most suited for the human. From [13], Visual Analytics is
“The best of both sides” between the machine and the hu-
man, it is a collective effort from the machine best at pro-
cessing data and the human best at perception.

The Video Analytic Platform is built while keeping Vi-
sual Analytics in mind. The concept is based on event anal-
ysis where every event has a bag of images consisting of
a subset of the video. In the VAP lexicon, Event, desig-
nated as E, is an instance when certain conditions related
to what is observed in the video are met, whereas Details of
interest, designated as D{Ei}(E), are a set of static images
and associated metadata (annotations, timestamp and score)
that are extracted and saved from the video when an event
of interest happens, of which one image with annotation is
chosen to represent the Event.

Based on these definitions, the main VAP task is to re-
place a continuous video-stream with a list of Details {Dj}
that can be efficiently browsed and analyzed.

The interface can filter the results by type of descriptor,
score, flag, timestamp, camera and comment. This multi-
dimensionality gives the user the ability to search for events
of interest and prioritize its efforts. The efforts were opti-
mized by sorting the events by descending algorithm score
and thus giving a better chance of finding important events
in a limited time period. The descriptor was set for only



Figure 5. VAP Event Browser interface that allows efficiently reviewing detected events

Figure 6. Timeline View of the VAP Event Browser interface allows analyzing events using the timeline information.

one type of event. Suspicious events would be flagged, af-
ter processing the operator would select only flagged events
and could review in more detail whether the event is a false
positive or not.

To improve the efficiency, peripheral vision and phys-
ical navigation was used. From [3], “The key benefits of
exploiting physical navigation over virtual navigation are
its physical efficiency (especially eye and head movements),
its cognitive efficiency as a user interface, and its natural
learnability”. Multiple events were played at the same time
in loop in descending score order. The length of the video
was determined by the underlying architecture, but we de-
termined that a one to two second event was optimal. The
user could quickly delete a false alarm or flag the video as
being important. By having five videos played at the same
time, we optimized the human and computer time. The hu-
man was able to observe more than one video at the same
time as detecting the running action does not need the full
attention of the operator. The computer was able to load the
latest videos as the operator was watching the oldest ones
thus giving a minimal loading time.

For evaluating the efficiency of the peripheral vision and
physical navigation components, two tests were run with
identical events, with a button to flag a video as a true pos-
itive and a button to delete a video in the event of a false

positive. The first test displayed only a single video at
once, while the second test displayed multiple videos simul-
taneously. Displaying multiple videos allowed us to pro-
cess more PersonRuns events in the same span of time. In
a 3-minute test, a user was able to classify 46 events per
minute when multiple videos displayed simultaneously. In
constrast, displaying only a single event slowed down user
classification time to 34 events per minute.

3.2. Applying VAP software to TRECVID test

In the context of this TRECVID submission, all detected
events are imported into VAP and sorted by SVM response,
so events deemed most likely by the SVM classifier appear
at the start of the interactive process. For each event, the
video plays and a simple click can flag an event as a true
positive. Alternatively, another click removes an event if it
is deemed to be a false positive. This can be visualized by
the context menu in Figure 5. We exploit the user’s abil-
ity to detect events in their peripheral vision by playing the
five most likely events simultaneously, in a horizontal row.
Our experiments found this technique to be effective, as we
were able to identify events occurring in videos which were
not the immediate focus, increasing the number of videos
analyzed within the allocated time slot. For the submission,
the human operator was successful at processing more than



Figure 7. Extracted meta-data, such as rectangles, points, and vectors detected by the detection algorithm, can be used by VAP Event
Browser interface to make visual processing more efficient though the use overlaid graphical annotations and extracted regions of interests.

600 events in 25 minutes or 24 events per minute with the
help of VAP.

Scalability is achieved by distributing all automated
components across multiple machines, and can be furthered
by having multiple users classifying events. One could triv-
ially accomplish this, as the platform is web based.

3.3. Additional VAP software features

In addition to Smart Search view, VAP Event Browser
can overlay videos with useful visual information (Figure 7)
and provides an ability to view events using Timeline View.
Timeline View shows events using timestamp information,
as shown in Figure 6. — One blue block shows one event
in a one hour window. The length of the block is propor-
tional to the length of the event. This view is very useful for
processing surveillance footage with real timestamps, since
the timestamp may help significantly expedite visual clas-
sification. For example, classification between a car and a
bicycle could be done by checking the event length. In cur-
rent TRECVID evaluation however, this view could not be
fully used at because the timestamp of the TRECVID video
sequences is not known, and also because the length of all
video clips extracted by the video analytic module was fixed
(2 secs) for all events.

4. Results
All training and event detection was done on the

Gatwick dataset, surveillance footage captured at the Lon-
don Gatwick airport recorded with MPEG2 compression
at a resolution of 720x480 at 25 frames per second. This
dataset consists of five cameras which contain some over-
lap. Each camera is broken up into several hours of video
across multiple days, which ensures that systems do not
overtrain on specific persons and allows for different vari-
ations on the same event. Camera 1 observes people exit-
ing and entering through a series of doors, as well as a few

shop entrances. Camera 2 observes a dense waiting area
with several people sitting and walking through a crowded
walking lane. Camera 3 observes many people standing and
waiting, as well as a consistent flow of pedestrians passing
by. Camera 4 directly observes two elevator doors with very
little else in the scene. Finally, camera 5 observes multiple
crowded horizontal walking lanes, where pedestrians will
walk by at different visual scales. Training was performed
on selected portions of 60 hours of the development and
evaluation video sequences from these cameras. Event de-
tection was performed on a final 15 hours of test data.

The interactive surveillance event detection task allows
for a user to spend 25 minutes with a visual analytics tool
to select true positive events from the video analytics sys-
tem’s event detection process. Within this 25 minute time-
frame, our test user selected 15 “true positive” events for
the PersonRuns task. As described in Table 1, nine of these
events selected by the user were deemed to be false posi-
tives, while six of them were deemed to be true positives.
Due to the nature of the underlying event detection system,
all events processed were of two fixed lengths as processed,
50 frames or 25 frames. As such, it is possible that some of
the false positives were a result of the intersection between
the selected event and the ground truth being too small to be
considered a true detection. A possible remedy for such a
situation would be to add sliders to the visual analytics tool
to modify the start and end frames of each event. While this
would slow down the human processing speed, it would in-
crease the precision of each detection, allowing us to accu-
rately capture the entire event and less spurious data.

The DET curve for the returned results is displayed in
Figure 8. Our returned DCR score is 0.9469. A DCR score
is a weighted linear combination of the missed detection
probability (the number of missed detections divided by the
number of events) and the rate of false alarms. A DCR score
of 0 is indicative of a perfect detection system, so lower



Figure 8. DET curve for our submission for the PersonRuns event on the interactive SED task. The DET curve plots the missed detection
probability against the rate of false alarms. Our result is the darkest blue curve, as shown in the legend (VIVA-uOttawa p-baseline 2).
The actual DCR value is equivalent to the minimum DCR value, so only one node is visible due to the minimum and actual DCR values
overlapping.



Title #Targ #NTarg #Sys #CorDet #FA #Miss RFA PMiss DCR
PersonRuns 107 9 15 6 9 101 0.59027 0.944 0.9469

Table 1. Details of our submission for the PersonRuns event on the interactive SED task. There were 107 true events (#Targ), while we
detected 15 (#Sys). 6 of those 15 events were deemed to be true events (#CorDet), while 9 were deemed false alarms (#FA), giving us
101 missed detections (#Miss). Our rate of false alarms is 0.59027 (RFA), and our percentage of missed detections is 0.944 (PMiss). The
weighted linear combination of the false alarm rate and probability of a missed detection is 0.9469 (DCR).

DCR scores are deemed to be representative of a more ac-
curate event detection system, with respect to false alarms
and detected events. A thorough explanation of the perfor-
mance measures is available in [17].

In the context of other TRECVID teams, two groups
achieved lower DCR scores, while five teams have higher
DCR scores reported than our DCR of 0.9469. The mean
DCR is 0.9406, lowered by the best DCR of 0.573, while
the highest DCR was 1.3748. Our rate of false alarms (RFA)
is 0.59027, the second lowest in this year’s TRECVID task.
The average RFA is 22.0040075, significantly higher than
our own. The disparity in RFA scores indicates that there
are multiple methodologies that were used to determine
how to prune the automated detection results. The largest
RFA value is 119.82510, indicating that rather than manu-
ally filtering events sequentially, an approach of tuning pa-
rameters to optimize on a subset of the results may have
been taken. Conversely, the lowest RFA score is 0.39351.
That score corresponds to a submission with very few (8)
detected events, likely indicating that a similar approach to
our own was taken, through manual sequential filtering.

5. Discussion
In this paper, we propose the use of a standard bag-of-

words event detection model with binary feature descrip-
tors. The binary feature descriptors permit efficient match-
ing between detected keypoints and cluster centers, by using
the hamming distance rather than a slower distance metric,
such as the Euclidean distance. Furthermore, the dimen-
sionality of the descriptors is greatly reduced, leading to fur-
ther efficiency gains and a reduced disk space cost. Despite
the computational gain, the overall recognition performance
of the system could be greatly improved.

To address the time constraint requirement of the SED
task and in order to filter out efficiently the false alarms, we
piped the results obtained in the video analytic component
of our solution to the visual analytic component which relies
on the human’s visual recognition power to enable efficient
processing of visual data. This component, originally de-
veloped by CBSA for testing third party video analytics in
operational CCTV environments, is further custom-tuned to
efficiently view, flag and delete TRECVID detection results
data.

Further work includes improving the video analytic com-
ponents (eg. improving the data used to train the classi-

fier, a per-camera classifier, restricting the search space in
each camera view to remove unlikely areas for an event to
occur, etc), visual analytic component (eg. further tuning
of multi-clip viewing, keyboard short-cuts, graphical anno-
tations, and visually salient GUI components) as well as
better data pipe-lining between both components and more
configurability (eg. to allow detected clips to be of variable
length and to have more detailed associated metadata).

5.1. Relevance to operational needs

In order to relate the value of the obtained results to the
operational needs, we present in Table 2 the estimates of the
value-cost analysis of the presented technology, measured
in terms of full-time employeee (FTE) required to perform
that task.

Automated event detection technologies garner a great
deal of interest from government and private organizations,
due to the vast benefits they could bring to real-time surveil-
lance applications, as well as post-event surveillance data
analysis. Despite this interest, the current maturity of these
technologies does not meet the standard required for real-
time deployment in the field. Experiments at TRECVID
reveal that with 25 minutes of human analysis, only 6% of
true events can currently be identified in a 15 hour testing
set.

Despite the current shortcomings, the results at
TRECVID showcase growing evidence in the maturing of
video analytics techniques over the recent years. Com-
bined with efficient visual analytics interfaces, they may
provide an effective means for post-event analysis of com-
plex surveillance data.
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