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Abstract 

We describe the Raytheon BBN Technologies (BBN) led VISER system for the TRECVID 2013 Multimedia Event Detection 

(MED) and Recounting (MER) tasks. We present a comprehensive analysis of the different modules: (1) a large suite of visual, 

audio and multimodal low-level features; (2) video- and segment-level semantic scene/action/object concepts; (3) automatic 

speech recognition (ASR); (4) videotext detection and recognition (OCR).  For the low-level features, we used multiple static, 

motion-based, color, and audio features and Fisher Vector (FV) representation. For the semantic concepts, we developed various 

visual concept sets in addition to multiple existing visual concept banks. In particular, we used BBN's natural language 

processing (NLP) technologies to automatically identify and train salient concepts from short textual descriptions of research set 

videos. We also exploited online data resources to augment the concept banks. For the speech and videotext content, we 

leveraged rich confidence-weighted keywords and phrases obtained from the ASR and OCR systems. We combined these 

different streams using multiple early (feature-level) and late (score-level) fusion strategies. Our system involves both SVM-

based and query-based detections, to achieve superior performance despite of the varying number of positive videos in the event 

kit. We present a thorough study of different semantic feature based systems compared to low-level feature based systems.  

Consistent with previous MED evaluations, low-level features still exhibit strong performance. Further, our semantic feature 

based systems have improved significantly, and produce gains in fusion, especially in the EK10 and EK0 conditions. On the pre-

specified condition, the mean average precision (MAP) of our VISER system are 33%, 16.6% and 5.2% for the EK100, EK10 

and EK0 conditions respectively. These are largely consistent with our ad hoc results that are 32.2%, 14.3% and 8.1% for the 

EK100, EK10 and EK0 conditions respectively. For the MER task, our system has an accuracy of 64.96% and takes only 52.83% 

of the video length for the evaluators to analyze the evidence and make their judgment. 

Description of Submitted Runs 

Pre-Specified Task: 

EK100: 

BBNVISER_MED13_OCRSys_PROGAll_PS_100Ex_1:  

This system combines OCR systems trained on the provided EK100 examples and query based systems that utilize the provided 

event kit text. 

BBNVISER_MED13_ASRSys_PROGAll_PS_100Ex_2:  

Similar to the OCR submission, this submission combines an ASR system trained with the EK100 examples with a query based 

system. 

BBNVISER_MED13_VisualSys_PROGAll_PS_100Ex_1:  

This system combines multiple sub-systems developed using low-level and semantic visual features that are trained using the 

EK100 examples. 

BBNVISER_MED13_AudioSys_PROGAll_PS_100Ex_1:  

This system combines multiple sub-systems developed using low-level audio features that are trained using the EK100 examples. 

BBNVISER_MED13_FullSys_PROGAll_PS_100Ex_1:  

This system combines multiple sub-systems based on low and high-level visual and audio features, as well as ASR and OCR 

based systems. 

EK10: 

The BBNVISER_MED13_OCRSys_PROGAll_PS_10Ex_1, BBNVISER_MED13_ASRSys_PROGAll_PS_10Ex_2, 

BBNVISER_MED13_VisualSys_PROGAll_PS_10Ex_1, BBNVISER_MED13_AudioSys_PROGAll_PS_10Ex_1, 

BBNVISER_MED13_FullSys_PROGAll_PS_10Ex_2 are similar to the EK100 counterparts but are trained using the provided 

EK10 examples. 

 



 

 

EK0: 

The BBNVISER_MED13_OCRSys_PROGAll_PS_0Ex_1, BBNVISER_MED13_ASRSys_PROGAll_PS_0Ex_1, 

BBNVISER_MED13_VisualSys_PROGAll_PS_0Ex_1, BBNVISER_MED13_AudioSys_PROGAll_PS_0Ex_1, 

BBNVISER_MED13_FullSys_PROGAll_PS_0Ex_1 are based on the OCR, ASR and semantic audio and visual features, and 

utilize a query based approach for event detection. 

Ad Hoc Task: 

We submitted a set of systems identical to the pre-specified task for the ad hoc task. 

1 Introduction 

Techniques for fast, automatic analysis of large volumes of unconstrained web videos and detection of events of interest has 

several compelling applications. The annual TRECVID Multimedia Event Detection (MED) and Recounting (MER) evaluations 

[Smeaton et al. 2006, Over et al. 2013] aim to measure progress in developing such techniques, and strong performance has been 

reported in recent evaluations [Jiang et al. 2010, Bao et al. 2011, Natarajan et al. 2011, Aly et al. 2012]. The core of these systems 

is based on the bag-of-words [Csurka et al. 2004] approach built on low-level features extracted from pixel patterns in videos. 

This approach has several advantages, such as compact video representation and ease of model training and prediction using well 

understood techniques such as support vector machines (SVM). However, this method requires a large training set to train 

reliable event detectors.  Furthermore, this approach does not provide the ability to recount or reason about the events and 

evidences seen in videos. 

In this paper, we provide an overview of the BBN’s VISER system for the TRECVID 2013 MED and MER evaluations. Our 

system uses a combination of low-level visual, audio and multimodal features, as well as semantic audio-visual concept detectors. 

Our low-level system combines a set of features that capture salient gradient, color, texture, motion and audio patterns. Our 

semantic system includes a suite of off-the-shelf detectors as well as a novel set of weakly supervised concept detectors. We also 

leverage data downloaded from the web for training our concept detectors. For the MED task, we fused these with speech and 

videotext output using late fusion to get final system outputs. For the MER task, the outputs of the semantic concept detectors 

along with speech and videotext were thresholded and combined to produce event recounting. Our main findings can be 

summarized as follows: 

 Low-level features continue to exhibit strong performance and form the core of our EK100 and EK10 submissions; 

 Semantic features produce significant gains for the EK10 system and also show promising performance for the EK0 

condition; 

 Speech and videotext provide complementary evidences and consistently improve performance for both pre-specified 

and ad hoc event detection; 

 Our MER system allows an analyst to achieve reasonable event detection accuracy and the evidences take 50% less 

time to view than the full video. 

The rest of the paper is organized as follows. In Section 2, we describe our low-level feature system in detail. Section 3 describes 

our high-level semantic features system. In Sections 4 and 5, we describe our ASR and videotext OCR systems. In Section 6, we 

present the different feature fusion strategies. We conclude with a discussion of experimental results in Section 7. 

2 Low-level Features 

We extracted and combined multiple audio and visual features using Fisher Vector encoding. We considered the following 

features and systems: 

Audio Features: We considered Mel-Frequency Cepstral Coefficient (MFCC), Frequency Domain Linear Prediction (FDLP) 

and Audio Transients (AT) features. In addition, we tested a low-level audio feature (LLfeat-A) system. 

Visual Features: We considered multiple visual features including a Compressed Histogram of Oriented Gradients (CHOG) 

[Chandrasekhar et al. 2011], gray-scale dense-SIFT (D-SIFT) [Boureau et al. 2010], color D-SIFT (Opp-D-SIFT) [van de Sande 

et al. 2010] computed in the opponent color space, BBN’s kernel descriptor-based motion feature (KDES-GF1) [Natarajan et al. 

2012], a dense trajectory-based feature that combines shape and motion features (DT) [Wang et al. 2013]. In addition, we 

developed a system that combines all these low-level visual features (LLfeat-V). 

Audio-Visual Fusion: We also combined the audio and visual features to get a single system called LLfeat. 

3 Semantic Features 

Ability to detect high-level semantic concepts in videos is crucial for event recounting and event detection with a small training 

set. However, there are several challenges in developing robust systems for detecting such semantic concepts. First, the set of 

possible concepts that can occur in web videos is potentially infinite, making traditional ontology based approaches such as 

LSCOM infeasible. Second, it is extremely time consuming to collect a sufficient number of annotations for concepts of interest 



 

 

that can be used to train robust concept detectors. The annotation task becomes harder if it involves marking spatial or temporal 

bounding boxes. 

3.1 Evaluation of Off-the-Shelf Concept Detectors 

We conducted a detailed evaluation of two popular off-the-shelf concept detectors for the MED task: ObjectBank [Li et al. 2010] 

and SUN scene attribute [Patterson et al. 2012] features. SUN scene features produce a feature vector where each element 

corresponds to the detection score for a particular concept. ObjectBank uses a spatial pyramid representation and produces 

detection confidence scores at different spatial patches for each concept. In this case, we measured the performance of both the 

full feature vector (Full), as well as the vector obtained by considering only the highest confidence detection for each concept 

(Max). The table below summarizes the performance of these features compared to our baseline dense SIFT based low-level 

feature. 

Features AP R0 

D-SIFT (baseline) 0.2779 0.3776 

SUN Scene Attributes 0.1041 0.1384 

ObjectBank (Full) 0.1565 0.1893 

ObjectBank (Max) 0.0459 0.0508 

Table 1: Comparison of ObjectBank and SUN Scene attribute features for MED for EK100 training condition on BBN’s internal 

test partition. 

The off-the-shelf detectors we tested had significantly weaker performance compared to low-level features for the EK100 

training conditions, and also did not help in fusion. 

3.2 Weakly Supervised Concepts (WSC) 

We developed techniques to exploit the annotations in the judgment files provided by LDC for training concept detectors. This 

allows us to utilize annotations of the research set videos that are already available at no additional cost. However, a challenge 

with this data is that they are short, free-form text descriptions. We address this by applying BBN’s natural language processing 

technologies to detect salient concepts in the text annotations. 

For each of these concepts, we aggregated the corresponding videos in whose annotations they occurred. Then, we pruned all 

concepts that had too few video occurrences to ensure we had sufficient examples to validate and train the concept detectors. 

Next, we extracted multiple low-level features from the videos to capture salient gradient, motion, color and audio patterns. We 

then trained detectors for each concept by combining these features. Finally, we did a second round of pruning the concepts based 

on the mean average precision (MAP) metric to ensure that the detected concepts have a reasonable level of accuracy. The 

detected concepts can be directly used for recounting (MER) and describing the video. Further, for the event detection task 

(MED), we use the vector of detection scores for different concepts for training event detectors. The table below illustrates the 

performance of these features on the official MEDTEST partition: 

Features AP R0 

D-SIFT 0.2897 0.3838 

WSC-D-SIFT 0.2108 0.3405 

DT 0.3357 0.4272 

WSC-DT 0.2718 0.3817 

Table 2: Comparison of weakly supervised concepts with low-level features on MEDTEST EK100. WSC-D-SIFT and WSC-DT 

refer to WSCs trained on D-SIFT and the dense trajectory (DT) features respectively. 

As can be seen, WSCs are significantly weaker than the corresponding low-level feature based system, but are stronger than off-

the-shelf concept detectors. Further, we tested combining these concept detectors with a low-level feature based system. We 

found that they produce strong performance gains for the EK10 condition, while the gains for EK100 are modest. This is 

illustrated in the table below: 

Features AP R0 

EK10-LLfeat-V 0.1459 0.1885 

EK10-LLfeat-V + WSC-D-SIFT + WSC-DT 0.1785 0.2190 

EK100-LLfeat-V 0.3810 0.4771 

EK10-LLfeat-V + WSC-D-SIFT + WSC-DT 0.3852 0.4830 



 

 

Table 3: Fusion of WSC features with a low-level feature based visual system (LLfeat-V) for the EK10 and EK100 conditions. 

3.3 Concept Discovery from Flickr 

We have designed a novel framework for automatic concept discovery from the internet images.   

(1) Candidate Concept Discovery: We first retrieve a set of images from Flickr, and re-rank them by the event SVM model 

trained with the TRECVID MED training videos so that the top ranked images are visually related to the target event videos. We 

calculate TF-IDF values of the tags associated with these top ranked images and treat the tags with high TF-IDF values as the 

candidate concept pool. 

(2) Visual Concept Verification: To ensure that only visual related concepts are included, we first treat the images associated 

with a concept as positive training samples and choose a number of images from the other concepts as negative training samples. 

Then we split all training images into two halves and do 2-fold cross validation. Finally, only the concepts with high cross 

validation performance are verified as visually related concepts and retained in the concept library.    

(3) Concept Representation Generation: We consider each tag as a concept and use the associated images to train a SVM 

concept classifier. The concept scores generated on the MED videos are then treated as concept based video representation.  

(4) Salient Concept Selection based on L1-SVM: After the concept representation generation, each video is represented as a 

concept score vector. However, some dimensions may still be irrelevant to the target event. To remove such noisy dimensions, 

we use L1-SVM to automatically set the values of irrelevant concept dimensions as zero. Once we select the salient concepts 

from L1-SVM, we can represent all videos based on this concept subset and train an event detection model using L2-SVM. 

Our method has several advantages:  

1. Concepts are automatically discovered from the internet, and most of them are highly relevant.  

2. Images for training a concept classifier are chosen to be more compatible with video contents, and thus the content 

discrepancy between different visual resources is reduced.  

3. L1-SVM allows us to optimally determine the concept descriptions from the entire concept pool, and achieves robust 

semantic based event detection. 

4. Our concept classifiers can also be used for the MER task. Specifically, for each video, we ranked the concept scores 

and treated the top ranked concepts as the recounting concepts of the video content. Since the concepts classifiers are 

trained separately, the SVM scores cannot be compared directly. We thus applied Gaussian normalization to make the 

scores comparable.  

3.4 Object Detection 

We used detections from a state-of-the-art object detector developed by Pedro Felzenszwalb at the University of Chicago 

[Felzenszwalb et al. 2010]. We used a representation called the spatial probability map which captures the spatial distribution of 

an object’s presence in a video. Overall, we found car detections to produce consistent gains for the “Getting vehicle unstuck” 

event, but did not find significant improvement when we used other detectors. The person detections provided salient information 

for the recounting task. 

3.5 Salient Object-based Concept Feature 

We also applied the Classemes models provided in [Torresani et al. 2010] to generate novel scene concept features. These models 

were trained over a large scale concept pool (around 3,000 concepts) defined in LSCOM. In order to refine the concept feature 

output, we proposed the idea of a salient object based concept feature. Specifically, we first detect regions containing prospective 

salient objects based on image multi-scale saliency, color contrast, edge density and straddleness. Within each region, we use the 

Classeme concept detector. Max-pooling is used for each frame result. Average-pooling is used for multiple frames within each 

video. This approach consistently improved performance over the Classeme baseline in our experiments. 

4 Automatic Speech Recognition 

We use GMM-based speech activity detection (SAD) and HMM-based multi-pass large vocabulary automatic speech recognition 

(ASR) to obtain speech content in the video, and encode the hypotheses in the form of word lattices. We first transform the raw 

audio into a 45 dimensional feature stream using the following steps. 14 Mel-warped cepstral coefficients were extracted from 

overlapping frames of audio data, each 29ms long, at a rate of 100 frames per second. Each segment of speech is normalized by 

the mean cepstrum and peak energy non-causally, removing any long term bias due to the channel. In addition, the feature 

vectors are scaled and translated such that for each video, the data has zero mean and unit variance. These 14 base cepstral 

features and the energy, together with their first and second derivatives, compose the final 45-dimensional feature vector. 



 

 

Then, the speech segments are identified by the SAD system [Ng et al. 2012]. The SAD system employs two Gaussian mixture 

models (GMM), for speech and non-speech observations respectively. A small subset of 100 video clips was annotated for speech 

segments, used for training the speech GMM. Besides the non-speech segments in this set, we also use 500 video clips with 

music content to enrich the non-speech model, in order to handle the heterogeneous audio in consumer video. SAD was evaluated 

on 40 video clips and obtained a False Alarm rate of 10.1% and Miss Detection of 5.8% according to the NIST md-eval metric, 

with a 0.25 seconds collar. 

Given the automatically detected speech segments, we then apply BBN's large-vocabulary ASR system to the speech data to 

produce a transcript of the spoken content. This system is adapted from an ASR system trained on 1,700-hour English Broadcast 

News. In particular, we update the lexicon and language model using MED 2011 descriptor files [Over et al. 2011], relative web 

text data, and the small set of 100 video clips with annotated speech transcription. We use a trigram language model trained over 

2 million words of in-domain data from the MED 2011 descriptor files and relative web text data and 11 billion words of out-of-

domain web-data. The vocabulary size is about 168k. The acoustic models are adapted during ASR decoding for each video clip 

in an unsupervised fashion via Maximum Likelihood Linear Regression (MLLR) and Constrained MLLR (CMLLR). We 

evaluated the baseline ASR model and adapted ASR model on a held-out set of 100 video clips from the MED 2011 set [Over et 

al. 2011]. The WER of the baseline system was 48.2% and the WER of the adapted system was 35.8%. The system outputs not 

only the 1-best transcripts but also word lattices with acoustic and language model scores.  

5 Videotext OCR 

A videotext detector detects the bounding boxes, whose content is recognized by HMM-based multi-pass large vocabulary OCR. 

Similar to the ASR system, word lattices are used to encode alternative hypotheses. We leverage a statistically trained videotext 

detector based on SVM to estimate videotext bounding boxes. This detector is developed based on [Peng et al. 2011] and is 

briefly summarized here. 

Maximally Stable Extremal Regions (MSER) which are robust to illumination and viewpoint variations are selected as text 

candidates. Rich shape descriptors such as Histogram of Oriented Gradients (HOG), Gabor filters, corners and geometrical 

features are used to represent the candidates and classified using a support vector machine (SVM). Each positively labeled 

candidate serves as anchor region for word formation. We then group candidate regions based on geometric and color properties 

to form word boundaries. This allows us to overcome the mistakes of the classification step. To speed up the system for practical 

applications while preserving discriminative features, we use Partial Least Squares (PLS) approach for dimensionality reduction. 

The detected words are binarized and filtered before being passed to an HMM-based OCR system for recognition. On a small 

consumer video dataset with videotext bounding boxes annotated, the videotext detector achieves pixel-level precision and recall 

of 67.9% and 31.8%. Note that these measurements are calculated on the raw pixel level, as our HMM-based OCR system 

expects tight bounding boxes around videotext regions. 

With each identified videotext bounding box, this two-dimensional text image is converted to a one-dimensional frame sequence, 

each frame characterized by features such as intensity percentile, local stroke angle, correlation and total energy within the 

sliding window corresponding to the frame. Then the HMM-based BBN OCR system finds a sequence of characters that 

maximizes the posterior, by using glyph models (similar to the acoustic models in ASR), a dictionary and N-gram language 

models. This OCR system employs various parameter sharing and performs recognition in a multi-pass fashion. The vocabulary 

size is about 140k. Details about the BBN HMM-based OCR systems can be found in [Peng et al. 2013]. Since the videotext 

content presents itself in various forms, such as subtitles, markup titles, text in scenes (e.g., banners and road signs), it is much 

more challenging than conventional scanned document OCR. Considering that we focus on bag-of-words representation for OCR 

in this work, we measure the word precision and recall within each video, at 37% recall and 14.7% precision. 

6 Classifier Learning and Feature Fusion 

Using the features described so far, we built multiple sub-systems by training kernel based classifiers for each event. During this 

process, we jointly optimized the classifier parameters and the detection threshold. Given a test video, we obtained classification 

scores for each of these sub-systems. We then applied a late fusion strategy to combine these scores and obtain a final detection 

score. During training, we also estimated a detection threshold for the late fusion system. In this section, we will describe each of 

these steps. 

6.1 Early Fusion 

We trained different subsystems by combining different features from the same class, such as appearance, color, motion, etc. For 

our EK100 and EK10 systems, we first computed χ2 kernels for each feature and then combined them using kernel product. 

Further, we used standard parameter estimation techniques to optimize the performance of each sub-system. 

6.2 System Combination 

After training the different sub-systems and estimating their detection thresholds, we combined the different sub-systems using 

weighted average fusion. Here, in addition to computing a global system level weight, we adaptively weight each system’s output 

on a video by video basis. The first is a system level weight (w1), which was calculated from the ANDC scores of each system 



 

 

based on our internal partitions. The second is a video specific weight (w2), calculated from the optimal threshold for the system 

found during our threshold analysis, and the confidence score for a given test video. 

Given these weights, the output score   for a video   is simply given by: 

 ( )  
∑   ( )  (   )    

∑   ( )  (   ) 

                                                                             ( ) 

We conducted a series of experiments to identify the optimal combination of systems for the EK100, EK10 and EK0 conditions. 

For each training condition, we obtained multiple sub-systems by combining individual features and then combined the sub-

systems using the weighted average based fusion strategy. 

Late fusion of multiple sub-systems consistently improves performance of our EK100 and EK10 systems compared to the best 

single sub-system. Further, fusion of EK0 systems with EK10 produced additional gains. Based on the combinations we 

identified, we submitted our systems to NIST for the TRECVID MED pre-specified and ad hoc conditions. 

6.3 0-shot Retrieval 

For our 0-shot system, we compared multiple audio and visual semantic feature based systems. For the audio modality, we 

considered outputs from automatic speech recognition (ASR), as well as the WSC features previously described, trained with the 

audio MFCC features. For the visual modality, we combined outputs from WSC-D-SIFT, WSC-DT, ObjectBank, SUN Scene 

Attributes, Classemes, as well as features learned from images downloaded from YouTube, Google Images and Flickr. We also 

leverage video text output from two different systems: one that performs character-level decoding (and hence can produce 

spelling errors but can capture useful content in non-standard text such as website names), and one that performs word-level 

decoding (that avoid spelling errors but produces erroneous outputs with non-standard text). 

In addition, we also developed a novel approach for leveraging low-level features for the 0-shot problem. We built this by 

utilizing the video-level text annotations available for the research set. After identifying salient concepts in the text, we averaged 

the low-level feature vector of all the videos in which each concept occurs. At query time, we retrieve the average vectors of the 

concepts in the query, compute the average of these vectors and then rank the search collection based on distances to this average 

vector. 

As expected, ASR and OCR have the strongest individual performances. We then combined these features for the official ASR, 

Audio, OCR, Visual and Full system submissions. An important challenge in 0-shot is threshold estimation, since we do not have 

any positive examples to calibrate the threshold. We addressed this challenge by setting the threshold based on a fixed false alarm 

rate computed on the background set for different systems. 

7 Experiments and Results 

In this section, we present results for the different systems we submitted for the Pre-Specified and Ad Hoc MED tasks, and for 

MER, on the PROGTEST set. 

7.1 Pre-Specified Event Detection Submission Systems 

For the pre-specified task, we submitted systems for all the training conditions and contrastive runs for ASR, OCR, Audio-only, 

and Visual-only systems besides the Full systems. The table below presents the MAP scores for the different submissions. 

 FullSys ASRSys AudioSys OCRSys VisualSys 

EK100 33.0% 7.6% 12.0% 4.8% 28.2% 

EK10 16.6% 3.5% 4.4% 3.2% 13.3% 

EK0 5.2% 1.4% 0.5% 2.8% 3.5% 

Table 4: MED 2013 Pre-Specified Results 

As expected, there is a large drop in performance from EK100 to EK10 and EK0. However, even for EK0 the performance of the 

full system performs significantly better than random. The visual-only sub-system is the strongest individual system even for the 

EK0 condition, illustrating the utility of our semantic features. Combination of the visual system with the other systems 

consistently produces performance gains. 

Our pre-specified submissions overall had strong performance in comparison to other TRECVID 2013 submissions. Our system 

had the top performance among all submissions for EK10-FullSys, 2nd for EK100-FullSys and 3rd for EK0-FullSys. We also had 

top performance for EK10 and EK10 Visual Systems and EK100 OCR system. Our systems were in the top-2 for most of the 

remaining contrastive runs and top-3 in all the submissions. 

7.2 Ad Hoc Event Detection Submission Systems 

We submitted an identical set of systems for the ad hoc task and pre-specified event detection. The table below shows the MAP 

scores for the different training conditions. 



 

 

 

 

 FullSys ASRSys AudioSys OCRSys VisualSys 

EK100 32.2% 8.0% 15.1% 5.3% 23.4% 

EK10 14.3% 4.1% 5.8% 2.3% 10.8% 

EK0 8.1% 2.5% 0.6% 3.0% 5.0% 

Table 5: MED 2013 Ad Hoc Results 

The performance of the different submissions were consistent with the trends observed in pre-specified, and was also competitive 

with the other submissions. Our EK10 and EK0 full systems were 2nd, while the EK100 was 3rd in terms of MAP. Further, our 

EK0 system had consistent performance between pre-specified and ad hoc demonstrating the generality of our concept detectors. 

7.3 MER Submission 

For the TRECVID Multimedia Event Recounting (MER) Task, we submitted a three-phase system that (1) detected concept 

instances from various modalities; (2) aggregated these detections by modality, filtering out detections with low confidence or 

low relevance to the event type at hand; and (3) generated a human-readable recounting containing itemized detections along 

with confidence and relevance information.  The system combined concept detections from the following systems: 

 Audio-Visual Concepts: We obtained these concepts using the system described in Section 3. For each test video, we 

applied all our concept detectors and pruned those concepts that had confidence below the threshold learned during training. 

 Automatic Speech Recognition (ASR): We applied BBN’s ASR system on the audio stream, and then detected salient 

keywords in the speech transcript. We then included these keywords, as well as the start and end times of their utterances in 

our MER submission. 

 Videotext: We applied BBN’s Videotext detection and recognition system on the videos and included the output in our 

MER submission. 

Our submission had an accuracy of 64.96%, percent recounting review time (PRRT) of 50.59% and observation text precision of 

1.78. Our system accuracy was 2nd across all submissions and was best among systems with PRRT<100%; i.e., systems for which 

viewing the evidence took less time than viewing the full video. 
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