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1 Abstract

This year EURECOM participated in the TRECVID 2013 Semantic INdexing (SIN) Task [11]

for the submission of four different runs for 60 concepts. Our submission builds on the runs

submitted last year at the 2012 SIN task, the details of which can be found in [8]. In 2013, two

runs are combinations of basic descriptors. One run adds uploaders bias to the pool of visual

features while another run was prepared in collaboration with Aalto University. All runs are

trained on annotations provided by the IRIM collaborative effort [4].

When compared with last year system, our runs use a larger set of visual features, and larger

visual dictionaries to provide a finer representation of the visual/clustering space and increase

the precision of the retrieval system. Like in last year’s submission we add a global descriptor to

visual features capturing salient details or gist of a keyframe. We further benefit from metadata

information by including an uploader bias to increase the scores of videos uploaded by same

users. A major difference this year is that we have used a new training algorithm based on a

combination of PEGASOS [14] mixed with Homogeneous Kernel Maps [16], while our previous

system was based on the libsvm library [5].

Our four runs are organized as follows:

1. EURECOM C: This is our basic run which fuses a pool of visual features, namely SIFT

[7] descriptors extracted through dense, log and hessian methods, a Saliency Moments

feature [12], a Color Moments global descriptor, the Wavelet Feature, the Edge Histogram,

the texture based Local Binary Pattern feature and the dense color pyramid [15]. The

order of the Homogeneous Kernel Maps varies from 1 to 11, depending on the size of

each descriptor. The classifiers are linear SVM trained with the PEGASOS algorithm. A

group-based fusion combines the results of the classifiers to provide the final score.

2. EURECOM EC: This run uses the same descriptors as the previous one, but the clas-

sifiers use a quantized version of the feature vectors. This allows to remove some memory



constraints for large vectors, and allows to use a higher order for the Homogeneous Kernel

Maps.

3. EURECOM ECU: This run uses uploaders’ information to boost the scores of the pre-

vious runs for certain concepts and certain users.

4. EURECOM-PicSOM: This run combines EURECOM ECU with a run from Aalto Uni-

versity.

Beside this participation, EURECOM took part in the collaborative IRIM and VideoSense

submissions; the details of those systems are included in the respective papers.

The remainder of this paper briefly describes the content of each run (Sec 2-5), including

feature extraction, classifier training and fusion methods. Figure 1 gives an overview of the

relationship between the 4 runs. In Section 6 results are commented and discussed.
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Figure 1: Framework of our system for the semantic indexing task



2 EURECOM Basic Run: EURECOM C

This run comprises a number of visual features ranging from local features to global image

descriptions. In this stage, the following features are computed.

• Color Moments This global descriptor computes, for each color channel in the LAB

space, the first, second and third moment statistics on 25 non overlapping local windows

per image.

• Wavelet Feature This texture-based descriptor calculates the variance in the Haar

wavelet sub-bands for each window resulting from a 3 × 3 division of a given keyframe.

• Edge Histogram The MPEG-7 edge histogram describes the edges’ spatial distribution

for 16 sub-regions in the image.

• Local Binary Pattern (LBP) Local binary pattern describes the local texture infor-

mation around each point [9], which has been proven effective in object recognition. We

employ the implementation in [2] to extract and combine the LBP features with three

different radius (1, 2, and 3) and get a 54-bin feature vector.

• SIFT from keypoints Two sets of interest points are identified using different detectors:

1. Difference of Gaussian

2. Hessian-Laplacian Detector

For each of the detected keypoints we then compute a SIFT [7] descriptor using the VIREO

system [3]. We use the K-means algorithm to cluster the descriptors from the training set

into 500, 1000 and 2000 visual words. After quantization of the feature space, an image is

represented by a histogram where the bins of this histogram count the visual words closest

to image keypoints. We therefore obtain feature vectors of dimension 500, 1000 and 2000.

• Dense SIFT and ColorSIFT We also use a dense sampling for the SIFT and ColorSIFT

descriptors proposed by Koen Van de Sande [15]. We use their software provided in [1]. We

created visual dictionaries of size 1000, 4000 and 10000. We pool the quantized descriptors

globally over the whole image. We also consider pooling according to a spatial pyramid

(1, 2x2, 3x1), so that the corresponding feature vectors have a dimension 8 times the size

of the dictionary.

• Saliency Moments descriptor This is a holistic descriptor which embeds some locally-

parsed information, namely the shape of the salient region, in a holistic representation

of the scene, structurally similar to [10]. First, the saliency information is extracted at

different resolutions using a spectral, light-weight algorithm [6]. The signals obtained are

then sampled directly in the frequency domain, using a set of Gabor wavelets. Each of these

samples, called ”Saliency Components”, is then interpreted as a probability distribution:

the components are divided into subwindows and the first three moments are extracted,



namely mean, standard deviation and skewness. The resulting signature vector is a 482-

dimensional descriptor [12].

• MEDA - COMEDA We have proposed descriptors based on marginal distributions of

the local descriptors. They have the advantage of a faster computation than bag-of-word

construction, and have shown efficient performance. Those descriptors are described in

[13].

Those feature vectors are expanded using the Homogeneous Kernel Maps [16], which approx-

imate the Histogram Intersection kernel by a scalar product. This allows to use linear SVMs

classifiers on the expanded vectors, instead of SVMs with more complex kernels. The order of

the Homogeneous Kernel Maps is adapted to the dimension of the feature vectors and range

from 1 to 11. For the longer feature vectors we use a lower order, so that the total memory

usage remains reasonable. An order of 1 corresponds to no change to the feature vector, so that

the classifier is a linear SVM on the initial feature vector. For higher orders, the classifier is an

approximation of an SVM with Histogram Intersection Kernel of the initial feature vector. The

higher the order, the better the approximation.

To train the linear SVMs, we have implemented a variation of the PEGASOS algorithm

[14], where we dynamically adapt the weight between positive and negative samples, as well as

updating several models in parallel. For each concept, we select the best SVM parameters as

those which maximize the Mean Average Precision (MAP) on a validation set. Because of time

constraints in the training phase, not all classifiers are available for all features.

We fuse the results of the classifiers using a two-level scheme. First, we gather the classifiers

into groups, where the groups contain similar features, for example a descriptor with different

sizes of dictionary. We first fuse the descriptors in each group, then fuse the results of all groups

altogether. The fusion is a linear fusion where the weights are optimized on a validation set. To

build the submission run, we apply all the classifiers to the test data, then perform the same

fusion mechanism to obtain the final scores.

3 EURECOM Second Run: EURECOM EC

This run is an expansion of the previous one, where we add new classifiers which operate on a

quantized version of the feature vectors. The quantization reduces the memory requirements, so

that it is possible to use a higher order of the Homogeneous Kernel Maps, even for the largest

feature vectors. The fusion mechanism remains the same, with new groups being added for the

quantized classifiers.

4 EURECOM Third Run: EURECOM ECU

As introduced last year, we also exploit the metadata provided with the TRECVID videos to

benefit from the video uploader’s information. The TRECVID training and test data come from



the same distribution and we have found that videos from several uploaders are distributed evenly

over the corpus. We benefit from this information based on the assumption that an uploader is

likely to upload videos with similar content. In other words most if not all videos uploaded by

one user represent information that is not much different from one another. For example if a user

runs a video blog about monuments in a certain city then almost all videos uploaded by that

user will contain concepts like sky or outdoor. This information thus increases our confidence in

the predictions of the concepts sky and outdoor if the test video is uploaded by the same user.

This model is applied to selected concepts on top of Run 2.

The uploader model simply calculates the ratio of video shots uploaded by the uploader for

each concept from the training data and modifies the output score of each new video shot if

that video is uploaded by the same person. This uploader bias allows us to rerank the retrieval

results. For each concept we calculate the probability of concept given uploader as:

p(c/u) =
W c

u

|Vu|

where Vu is the set of videos uploaded by uploader ’u’ and W c
u is the weightage of videos uploaded

by uploader ’u’ for the concept ’c’. This quantity:

W c
u =

∑
v∈Vu

|s ∈ v, s.t.s = c|
|s ∈ v|

is the sum of ratios of the number of shots labeled with concept ’c’ to the total shots in that

video for all the videos uploaded by ’u’.

We also calculate average uploader’s probability for each concept as:

p(c) =
W c

|V |

where W c is the total weightage of all the videos uploaded for concept ’c’, given by:

W c =
∑
u

W c
u

and V is the number of videos, or V =
∑

u Vu.

This model is computed on the training data separately for each concept. To apply the

uploader’s model to the test videos we calculate the coefficient α as:

α(c, u) = max

(
p(c/u)− p(c)
p(c/u) + p(c)

, 0

)
The score of each shot P (c|s) from the previous run is modified in the following way:

pu(c|s) = p2(c|s) ∗ (1 + α(c, u))

Cross validation on the development set showed that the uploader model has a positive

impact for 21 out of 60 concepts. It was therefore applied to those 21 concepts for the final run

and the other 39 were left unchanged.



5 EURECOM Fourth Run: EURECOM-PicSOM

This run is a collaboration between Eurecom and Aalto University. Aalto provided the scores

of one of their runs for all concepts. We used these to combine with the scores from our

EURECOM ECU run. Because of time constraint, we were not able to share information on the

training data, therefore we had no material to optimize a potential fusion mechanism. Moreover,

as the scores were obtained through completely different processing chains, their numerical values

(range and distribution) were not comparable. We decided to rely on a rank-based fusion: for

each run, we constructed an artificial score from the rank of each shot, equal to the inverse rank

(adjusted by an offset). Then, we simply averaged those scores and rerank the shots.

score(s) =
1

2
∗ 1

offset+ rank1(s)
+

1

2
∗ 1

offset+ rank2(s)

The value of the offset was taken as 100.

6 Results Analysis

Run MAP

EURECOM-PicSOM 0.2000

EURECOM ECU 0.1647

EURECOM EC 0.1289

EURECOM C 0.1171

Figure 2: Evaluation results for our (corrected) runs

Unfortunately, a bug in the last stage of the preparation of the runs causes the results lists

between different concepts to be mixed together. So, although the scores for each concept were

correctly computed, the sorted lists were completely erroneous, which caused the evaluation of

our runs on the test data to give irrelevant scores.

In Figure 2, we indicate the performances (MAP) of our runs, as described in the previous

chapter, but after correction of this bug. We can see that the uploader model had a subtantial

impact over the our second run, even though it was only applied over about one third of the

concepts. The performance of the initial PICSOM run was 0.18, so we can also observe that

mixing our run with the Aalto run was greatly beneficial.

In figure 3 we display the comparative performance of the four runs on each of the concepts

evaluated by NIST.

The difference in performance between Run 1 and Run 2 is due to the use of a larger order

for the Homogeneous Kernel Maps.

Run 3 improves further on Run 2. The uploader model improves average precision for

every concept, especially for concepts Dancing, Government Leader, Motorcycle, George Bush,

Quadruped and Studio With Anchorperson.
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Figure 3: Results on the test set evaluated by NIST

7 Conclusions

This year EURECOM presented a set of systems for the Semantic Indexing Task. As last year

we confirmed that using uploader information allows to greatly improve the detection of certain

concepts. We also showed that combining results from two completely different systems, even if

the combination has not been optimized on validation data, leads to a net improvement of the

performance on test data.
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