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Abstract

For this year’s TRECVID Multimedia Event Detection task
[11], our team studied a semantic approach to video retrieval.
We constructed a faceted taxonomy of 1313 visual concepts (in-
cluding attributes and dynamic action concepts) and 85 audio
concepts. Event search was performed via keyword search with
a human user in-the-loop. Our submitted runs included Pre-
Specified and Ad-Hoc event collections. For each collection,
we submitted 3 exemplar conditions: 0, 10, and 100 exemplars.
For each exemplar condition, we also submitted 3 types of se-
mantic modality retrieval results: visual only, audio only, and
combined.

The current IBM-Columbia MER system exploits nine obser-
vations about human cognition, language, and visual perception
in order to produce an effective video recounting of an event. It
designed and tuned algorithms that both locate a minimal per-
suasive video segment, and script a minimal verbal collection of
concepts, in order to convince an analyst that the MED decision
was correct. With little loss of descriptive clarity. the system
achieved the highest speed-up ratio amongst the ten teams com-
peting in the NIST MER evaluation.

For SED, we seek to explore temporal dependencies between
events for enhancing both evaluation tasks, i.e automatic event
detection (retrospective) and interactive event detection with
human in the loop (interactive). Our retrospective system is
based on a joint-segmentation-detection framework integrated
with temporal event modeling while the interactive system per-
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forms risk analysis to guide the end user for effective verifica-
tion. We achieve better results on the retrospective and interac-
tive tasks than last year.

For SIN, we submitted 4 full concept detection runs, and 2
concept pair runs. In the first 3 concept detection runs, we
changed our data sampling strategy between using balanced
bags via majority undersampling for ensemble fusion learning,
balanced bags via minority oversampling, and unbalanced bags.
For the 4th run we used a rank normalized fusion of the first 3
runs. Concept pair runs consisted of the sum of individual con-
cept classifiers with and without sigmoid normalization of the
dataset.

1 Multimedia Event Detection (MED)

1.1 Overview

For this year’s MED task, we sought to develop a semantic event
detection methodology that unifies the approach across all 3
search conditions: OEX, 10EX, and 100EX. Our system, sim-
ply summarized, allows semantic keyword search over the video
corpus. Semantic concepts are detected for both visual and au-
dio modalities. Upon supplied training examples in the form of
videos (for the 10EX and 100EX cases), our system analyzes the
videos to recommend a set of semantic concepts for the keyword
search event retrieval. This is used a starting point for the human
user to perform a given event search. When no event video ex-
emplars are available (OEX condition), the user employs our in-
terface to select the most intuitively relevant concepts from our
taxonomy to perform semantic keyword based search. In this
manner, the approach for all search retrieval conditions has been
unified under one elegant and user-friendly design.

In the subsequent subsections, each stage of our system is
described: VCD generation, ECD generation, and event search.
Finally, we summarize our submitted runs.



1.2 Video Content Description (VCD)

In this section, we describe the methods employed to model and
extract the semantic content from videos. The methods are bro-
ken into different components described in each of the subse-
quent subsections. The first set of components concern video
processing and both the variety of visual and audio low-level
features used to model the semantics. The second set of compo-
nents address modeling the semantics using our unique faceted
taxonomy approach in conjunction with the extracted low-level
features.

1.2.1 Low-level Feature Extraction
1.2.2 Video processing

We decode the video clip, and uniformly save one frame every
two seconds. These frames are then used to extract static visual
low-level descriptors. We extract over 100 types of static image
features from each of the sampled frames. These features cap-
ture a wide range of image information including color, texture,
edge, local appearances and scene characteristics. We chose 0.5
fps as a sampling rate based on the data set size in order to yield
a number of frames that we could process in a reasonable time.

Our system uses a subset of these low-level features to deter-
mine the semantic content of video frames, from which further
event modeling is performed. Semantic content is extracted at a
slower rate of 0.25 fps due to the added complexity of evaluating
the models.

1.2.3 Low-Level Descriptors for Semantic Analysis

A combination of local and global descriptors are extracted for
the analysis of the visual semantic content of video frames. Fea-
tures extracted include some standard ones, such as LBP, GIST,
Color Histogram, etc, as well as a new proprietary multi-scale
LBP and Fourier Polar Pyramid features.

Each descriptor is evaluated at various spatial granularities
that include global, center, cross, grid, horizontal parts, horizon-
tal center, vertical parts, vertical center, and pyramids — each of
which is a fixed division of the image frame into square blocks
(numbering from 1 up to 25), and then concatenating the de-
scriptor vectors from each block. Such spatial divisions has been
repeatedly shown robust performance in image/video retrieval
benchmarks such as TRECVID [14].

Local Binary Patterns (LBP) [16] are extracted across two
image granularities: global, and a pyramid consisting of 1x1
followed by 2x2. The LBP histogram is extracted from the
greyscale and color versions of the image as a histogram of 8-
bits local binary patterns, each of which is generated by compar-
ing the grayscale value of a pixel with those of its 8 neighbors in

circular order, and setting the corresponding bit to O or 1 accord-
ingly. A pattern is called uniform if it contains at most two bit-
wise transitions from O to 1. The final histogram for each region
in our granularity contains 59 bins, 58 for uniform patterns and
1 for all the non-uniform ones. In addition, we’ve implemented
a new multi-scale variant of the LBP descriptor this year, which
has shown improvements in performance. Currently, the multi-
scale LBP features are our best performing low-level features.

In addition to the LBP descriptors, we extracted 13 differ-
ent visual descriptors at 8 granularities and spatial divisions, in-
cluding Color Histogram, Color Correlogram, Color Moments,
Wavelet Texture, Edge Histogram, and GIST. SVMs are trained
on each feature and subsequently linearly combined in an en-
semble classifier. Details on features and ensemble classifier
training can be found in our prior report [1, 2].

We have also developed a proprietary feature referred to as a
Fourier Polar Pyramid. It incorporates ideas from both spatial
pyramids and from the Curvelets feature transform. The basic
idea is to construct a spatial pyramid in Fourier space, under the
polar coordinate system, across all 3 color channels red, green,
blue, in addition to a grayscale color channel. Pyramid levels
in the radial dimension consist of 1, 2, 4, and 8 partitions. For
each of these paritions, we also construct a pyramid in the angu-
lar dimension, of partitions 1, 2, 4, 8, 16, and 32 segments (see
Figure 1). Due to the property of image symmetry in Fourier
space, only the top half of the polar Fourier circle is sampled for
the feature vector. In addition, we have added a prefiltering step
to the original image that multiplies a circular mask to improve
the rotational invariance of the discrete Fourier transform. In to-
tal, the dimensionality of our new feature vector is 3900 for the
global granularity, and 19,500 for the layout granularity. For ef-
ficiency purposes, on the MED task, we reduced the complexity
of the Fourier Polar Pyramid to radial partitions of 1, 2, 4, and
8. Angular segments were reduced to 1, 2, 4, 8, and 16. This
resulted in a feature of 868 dimensions.

1.2.4 Spatio-Temporal Features

In order to train dynamic action concepts, we employed state
of the art spatio-temporal descriptors based on dense-trajectory
features. In particular, we adopted the Motion Boundary His-
togram (MBH) [18] descriptor within the bag of visual words
framework with a 5000-dimensional codebook.

1.2.5 Audio Features

We calculated two types of low-level audio features over non-
overlapping 2 second windows for each video. The first features
are based on conventional MFCCs, and constitute the mean and
full covariance matrix of the MFCCs. We use 20 MFCC dimen-
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Figure 1: Depiction of the overlapping polar pyramid partitions
sampled in Fourier-Mellin space (light blue boxes) used to com-
pute the Fourier Polar Pyramid.

sions in our basic feature (for a finer description of the spectrum
than is typically used in speech recognition); we also calculate
the deltas and double-deltas. MFCCs are calculated over 32
ms windows every 16 ms, and the delta and double-delta fea-
tures are calculated over blocks of 9 adjacent feature frames
(i.e., around 300 ms). The full representation of each window
then consists of 60 mean values for each dimension of the di-
rect, delta, and double-delta features, plus the 1830 (61 x 60/2)
unique elements of the covariance matrix calculated over the 125
frames contained within each 2 sec block. In practice, we used
only the 60 means plus the first 3 leading diagonals of the co-
variance matrix for 60+604-59+58 = 237 feature dimensions.
Each dimension was mean and variance normalized across the
training set before creating a Euclidean distance matrix between
2 sec clips to be used as the basis of SVM training.

The second feature type was based on the Auditory Image
Model of [9], which captures the fine temporal structure of the
audio signal across a set of frequency bands, chops this “audi-
tory image” into a number of different subregions, uses vector
quantization to capture the information in each subregion, then
performs classification on the concatenated VQ codeword his-
tograms. We replaced the detailed (and rather slow) auditory
front-end with a simplified approximation of a linear band-pass
filterbank followed by running autocorrelation, and performed
VQ on the resulting a PCA reduction of the resulting “correl-
ogram” image in four separate frequency regions (each of 6
bands). With 1000 entries in each codebook, each 2 sec win-
dow was represented by a normalized 4000 dimensional his-
togram. In our experiments, this simplified model performed
essentially the same as the full Lyon model, and a little worse
than the MFCC features. However, combining MFCC-based
and auditory-model-based features gave a substantial improve-
ment of around 15% relative, indicating their complementary
information. We used Chi-squared distance to turn this into a
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Figure 2: The Faceted Taxonomy approach offers many benefits
to other concept labeling methodologies.

distance matrix for use with the SVM.

Both kinds of features can be automatically and exactly ag-
gregated to larger time spans, for instance to calculate the over-
all features for an entire video. This is implemented within our
feature file retrieval routine.

1.2.6 Semantic Taxonomy

For the MED13 event detection task, our team utilized a taxon-
omy of visual concepts/categories based on the IBM Multime-
dia Analysis and Retrieval System (IMARS) taxonomy [5]. The
IMARS taxonomy is a set of federated multiple facets of con-
cept trees using four conceptual constructs: entity (node), facet
(node), is-a (link) and facet-of (link). Adopting the facet node
type and “facet-of” link type allows greater flexibility in mod-
eling mutually non-exclusive concepts, which represent differ-
ent view perspective of a same entity (e.g. people - number of
people, age of people). Sibling concepts (nodes) with an entity
parent node in the taxonomy tree are mutually exclusive. By in-
ferencing the structure and semantic relationships, the taxonomy
system can perform efficient labeling of training images by as-
sociating images with the each entity node in the hierarchy, and
allocates negative training examples accordingly with the recog-
nition of exclusiveness of entity nodes and non-exclusiveness of
facet nodes (Fig. 2).

This year, we have expanded our semantic taxonomy to 8
top level facets, with 1447 total concepts. These cover Image
Type (graph, natural photo, color, etc), Setting (Indoor, outdoor,
art studio, etc), People (Human, Adult, Child, Police Officer,
etc.), Objects (Vehicle, Ball, etc), Audio Concepts (Dog bark-
ing, speech, etc), Animals, Human Activities, and Human Ac-
tions (dynamic). The framework utilized to expand the taxon-
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Figure 3: Semantic Expansion Cycle. There are 4 stages: 1) De-
velop the Faceted Taxonomy Representation, 2) Expand concept
coverage, 3) Train classifiers, 4) Assess classifier utility.

omy is depicted in Fig. 3. Starting with our representation,
we mine concepts to expand our coverage, train classifiers from
those new concepts, and assess the utility of the resultant models
through a combination of detectibility, observability, and infor-
mation gain.

1.2.7 Visual Semantic Modeling

Modeling Pipeline

Visual semantic modeling is carried out by the IBM Multi-
media Analytics and Retrieval System (IMARS). IMARS is a
machine learning system designed for the extraction of seman-
tic content from images and videos. The system has been in
development for a period of over ten years, and is unique in its
ability to evaluate a multitude of modeling strategies to deter-
mine the best approach for each semantic concept. In addition,
the structure of the system gives it the ability to arbitrarily scale
to large learning problems.

Instead of training very large models by concatenating all
features in early fusion, and training models from all available
data, our system trains smaller Unit Models [19]. For each con-
cept, Unit Models are trained on a single feature, a single image
granularity (such as whole image, which results in a descriptor
matching the dimensionality of the feature, or a 5x5 grid result-
ing in a descriptor 25 times the dimensionality of the original
feature), and a random subsample of data, referred to as a bag
(Fig. 4). For each Unit Model, the system tries a variety of
modeling strategies and kernel parameters (29 or more), select-
ing the most effective approach via n-fold cross-validation. The
most discriminative Unit Models for each concept are selected to
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Figure 4: IBM Multimedia Analytics and Retrieval System
(IMARS) learning approach. Training data is partitioned into
Learning and Validation sets, which are further divided by fea-
tures and data samples, referred to as ”bags.” Unit Models are
trained for each bag, and an ensemble fusion approach using
forward model selection determines the best combination of unit
models to discriminate for the given concept.
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be fused into an ensemble classifier based on their performance
on a held-out validation set.

Building models in this manner yields several desirable prop-
erties:

1. The first is that data imbalance is markedly reduced. When
a Unit Model is sub-sampled, a maximum data imbalance
threshold is enforced. The whole of the majority class is
covered by the generation of many Unit Models, each with
a different sampling of examples.

2. The second is that the learning problem is much more ef-
ficient when training many smaller models, instead of one
large model, since the computational complexity of train-
ing a model is polynomial in nature

o (k (%)) << 0n°)

, especially for large & and large c.

ey

3. The third is that since each Unit Model is an independent
training task, we can easily parallelize to arbitrary scale.

4. The fourth is that since each Unit Model is trained over an
individual feature, the process of forward model selection
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Figure 5: Example top scoring semantic retrieval results on a
random sampling of 80,000 frames from the MED training data.
Note how the semantic classifiers can extract some subtle differ-
ences between concepts, such as that a steering wheel shown in
the red box is a ”Car Part” yet not a ”Car Tire” even though it
has a round shape.

IMARS: Animal SIN: Demonstration or Protest

Figure 6: Example top scoring semantic retrieval results on a
random sampling of 80,000 frames from the MED training data.

is also implicitly performing feature selection, as it deter-
mines the optimal combination of models to combine for
each concept.

Some example retrieval results using the trained semantic
models are shown in Figures 5 and 6. Note how our classi-
fiers tend to be able to differentiate some subtle characteristics,
such as a steering wheel being a car part, and not a care tire,
even though both objects are round in shape.

Probablistic Score Normalization

This year we researched and implemented a method for prob-
abilistic SVM score normalization. The purpose is to roughly
map an SVM score to the probability that the score actually
yields an instance of the positive class (Fig. 7). This type of
score normalization factors in the performance of an SVM clas-
sifier. For example, if Dog and Cat both score +0.75, but the AP
of Dog is 0.8 and the AP of Cat is 0.6 on a held-out test set, these
two scores can mean very different things.

In preliminary experiments, we see improvements both to

h Point A and Point B
Ry Average Score = +21.3
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NOTE: To ensure smoothness and no loss of precision from floating
point truncation, upper probability is limited to a maximum of 0.95,
and lower probability is limited to a minimum 0.05

Figure 7: Probability normalization process. A validation set is
balanced, and the probability of a positive instance is computed
for each half. The probabilities are then fit to a sigmoid with the
average score in each window. The resultant sigmoid function
serves as a mapping from SVM score to probability.

multiclass accuracy and boolean expression event retrieval per-
formance:

We used a 3 concept query for E029 (Winning Race With-
out a Vehicle) on the 100EX Event Kits dataset, and compared
performance of this query using several normalization methods:

1. Linear Norm (Original Normalization Method): Sport Fa-
cility + Track Scene + Track Racing = AP 0.398693

2. Probability: Sport Facility + Track Scene + Track Racing
= AP 0.425122

In addition, we performed a multiclass experiment on mutu-
ally exclusive sports concepts within the IMARS taxonomy. A
held out test dataset of 3020 images was utilized. The multiclass
decision was made using a MAX operator over classifier out-
puts, after normalization. Performance is shown as multiclass
accuracy:

1. Linear Norm: 0.68245033 (2061 / 3020)

2. Probability: 0.70794702 (2138 / 3020)
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Figure 8: Linear kernel approximation method.

Non-Linear Kernel Approximation

This year we implemented a method that approximates the
behavior of non-linear SVM kernels using linear kernels with
additional dimensions. In such a manner, we have been able to
maintain the performance of non-linear kernels with incredible
performance improvements.

The idea of our kernel approximation based is very simple:
first map each feature into a higher dimension space using ex-
plicit kernel mapping [17], and train a linear model with all the
concatenated features using LibLinear [4]. Figure 8 illustrates
this method.

1.2.8 Visual Attribute Modeling with Label Proportions

Attribute-based representation has shown great promises for vi-
sual recognition due to its intuitive interpretation and cross-
category generalization property. For MED, attributes can be
seen as adjectives describing properties of objects, scenes, hu-
man, actions etc. Such adjectives are very useful for describing
unseen categories. However, classic attribute learning requires
extensive manual labeling of the images. In this work, we pro-
pose to model attributes based category-attribute proportions.
Given a category-attribute proportion matrix A, in which A; ;
characterizes the percentage of images in category ¢ contain-

Figure 9: Examples of discovered attributes and their top ranked
images from the IMARS taxonomy: (a) dry, (b) cold, (c) read-
ing, (d) bathing.

ing attribute j, we use the recently proposed proportion-SVM
[20] to learn the attributes. In such case, the categories are the
IMARS concepts.

Specifically, for MED13, we consider learning the scene at-
tributes. We use a vocabulary of 102 attributes defined by [12].
Some examples are:

glossy matte sterile moist/ damp dry dirty rusty warm cold
natural man-made open area semi-enclosed area enclosed area
Jfar-away horizon no horizon rugged scene mostly vertical com-
ponents mostly horizontal components symmetrical cluttered
space scary soothing stressful.

Then, a 717 x 102 dimensional category-attribute proportion
matrix is computed from the SUN attribute dataset [12]. We then
apply the information for learning IMARS scene attributes. Our
assumption is that the proportions are approximately the same
for IMARS and SUN datasets. We then apply the the method in
[20]. Figure 9 presents some results of attributes classes in the
form of top ranked images from the IMARS taxonomy.



Table 1: The 45 semantic terms extracted from the brief annota-
tions of the BBC Sound Effects library.

stairs ambience speech
pavement babies cars
walking sports car
women steam boat
running cat transport
warfare vocals urban
wooden siren train
footsteps animals crowd
country rhythms electric
wood animal traffic
men birds street
horses rural children
emergency | electronic | household
construction horse crowds
futuristic aircraft voices

1.2.9 Audio Semantic Modeling

We trained a total of 100 semantic audio models on our low-
level audio features. The particular models were defined pri-
marily by the availability of suitable training data. 55 of the
models were the same as 2011, and were based on earlier clip-
level labeling efforts based on YouTube data selected to consist
of unedited consumer videos [8, 6], and on the MED2010 data
segmented in to 10 sec chunks. The remaining 45 models were
based on the 60 CD BBC Sound Effects Library, which con-
sists of 2238 sound files covering a wide range of conditions,
each lasting anywhere from a second to several minutes. Each
track in the BBC collection comes with a one-line description
including several keywords describing the sound; we generated
a list of candidate semantic classes by choosing the 100 most
common words in these descriptions, and training preliminary
classifiers for each one. We then sorted the words by the accu-
racy of these preliminary classifiers, and further filtered it down
to 45 by choosing concepts that were semantically meaningful,
reasonably successfully detected, and not redundant with other
selected terms. The full list of 45 terms is in table 1.

Since our semantic classification features are to be provided
at 2 sec resolution, we need to train on frames of this size. The
training labels we have, however, are at the level of video or
sound clip — typically much longer. For instance, a video tagged
as containing “Music Performance” may include several win-
dows of non-music sound prior to the performance beginning.
Training a “Music Performance” classifier on these frames of
generic background noise might hurt its discrimination.

Table 2: Mean Average Precision for labels aggregated to the
clip level from the iterative relabeling of 2 sec audio clips, for
the 10 sec segmented MED2010 corpus.

Epoch | mAP
1 0.523
2 0.537
3 0.559
4 0.562
5 0.559

To address this, we developed a Multiple-Instance Learning
(MIL) procedure. MIL refers to the scenario in which data
points belong to “bags”, with labels that indicate whether a par-
ticular bag contains any items of that class. Thus a bag with a
negative label will consist only of negative examples, but a bag
with a positive label will in general contain a mixture of both
positive and negative examples (like the frames in our Music
Performance video). Our procedure first trains classifiers assum-
ing all frames in the positive bags are true positives, and attempts
to discriminate them from the frames in the negative bags. Every
item in each positive bag is then submitted to a classifier (with
cross-validation, so a classifier is never applied to frames used
in its training), and any frames that fall below some threshold
in classifier score are relabeled as negative, with the constraint
that at least one frame in the bag (and any other frames whose
classifier scores are very close to this “best” frame) must re-
tain positive labels. Ideally, this will remove negative examples
from the positive pool; classifiers are then retrained, and the pro-
cess repeats until no further increases are observed on held-out
development data (where a simple combination rule is used to
produce a clip-level label from individual frames).

Our approach to choosing the threshold was to create his-
tograms of the classifier scores from the negative and positive
frames, calculate the cumulative distribution functions in op-
posite senses (i.e., P(score < @) for the negative frames, and
P(score > 0) for the positive frames), then choose the thresh-
old § where they intersect. By scaling one function prior to find-
ing the intersect, the threshold can be made to remove frames
from the positive bags more or less aggressively. Table 2 gives
an example of the changes in test set mean Average Precision
for iterative relabeling of the five frames in each 10 sec clip of
our segmented MED2010 set; performance at the clip level im-
proves for 4 epochs, then gets worse, so the labels for the 4th
epoch are used as the basis for the final 2 sec-resolution seman-
tic classifier. Note that we do not have any ground-truth labels at
2 sec resolution, so we cannot directly measure the frame-level
classifier performance.



Audio classifiers for the 100 semantic classes were trained
on both types of raw audio features, MFCC statistics and Audi-
tory Model histograms (Section 1.2.5). Because a single video
may contain hundreds of 2 sec windows, and because SVM dis-
tance matrix calculation is O(n?) in the number of frames, this
training was far more computationally expensive than training
whole-video classifiers. Further, because the histogram features
relied on a chi-squared distance measure, which is around 10
times slower to compute than the euclidean distance used for the
statistics, it was not possible to complete labeling of the MED12
development data in the available time; at 2 sec level, our 100 au-
dio semantic features are based only on MFCC statistic features.
At whole-video level, however, we were able to train separate
sets of semantic classifiers on both low-level audio features. The
outputs of these classifiers — SVM distance-to-boundary scores,
which have been found to be largely comparable between dif-
ferent classifiers — were then combined by simple summing to
create a set of fused audio semantic features.

To evaluate these semantic features, and to compare them to
the raw features, we used a task based on the first release of the
MED2011 DEV data and the example videos for events 001 to
015. This gives a combined pool of 6354 videos, which were
broken into 5 cuts, with classifiers trained on 4/5ths of the data
and tested on the remaining 1/5th. For this test, all features were
at the whole-video level. 15 independent per-event classifiers
were trained using the different feature sets. The results are
shown in Figure 10. We see that the raw MFCC and Auditory
Model (sbpca) features have different strengths, with the Audi-
tory Model features doing particularly well for E004 Wedding
Ceremony, EOO8 Flash Mob Gathering, and EO12 Parade. The
semantic features broadly reflect the raw feature performance,
but do better in some cases, such as EO01 Attempting a Board
Trick and EO09 Getting a Vehicle Unstuck (at least for MFCCs).
Finally, the fused semantic features (semalOOsum) are generally
successful in capturing or improving on the best individual fea-
ture in each category, delivering a 15% relative improvement in
mean Average Precision, from 0.19 for the raw MFCC features
to 0.22 for the fused semantic features.

1.2.10 Dynamic Actions Semantic Modeling

The 51 Dynamic Action concepts were modeled on top of
the 5000-dimensinal bow representation of MBH descriptors.
Training clips were employed from the publicly available
datasets HMDB [7] and UCF101 [15]. Each concept was mod-
eled as a histogram intersection kernel SVM, with probabilistic
output as detailed in Section 1.2.7.

Audio Based MED 11 Events

o
@

o
o

@ mfces-230

® sema100mfcc
0 sbpcas-4000

0 sema100sbpca
& sema100sum

o o
(XIS
5|

<
N}
=

Average Precision

o
o =
e

Event Label

Figure 10: Audio-based Average Precision results for MED2011
event classifiers (6354 video set), comparing classifiers based
on raw features (MFCCs and Auditory Model (sbpca)), and on
100-class semantic audio features based on each set of raw fea-
tures (semalOOmfcc, semalOOsbpca), and fused by summing
(semalOO0sum).

1.2.11 Temporal Granularities and Video Level Semantic
Aggregation

We experimented with Semantic representations extracted at
four different temporal granularities:

1. Frames: semantics are represented at the level of the
frames which are extracted from the video. We sampled
frames at a rate of 0.5 frames per second.

2. Keyframes: result of low level histogram descriptors based
shot detection

3. Intervals: result of a Semantic based analysis and of vari-
able length for each semantic

4. Video: result of an aggregation from frame level to entire
video clip

In all the submitted run we employed the Video level repre-
sentation using the fop-quartile aggregation method, which is
computed as the average of the top quarter responses of each
semantic classifier over the frames in the video. While active
research is being performed on the other temporal granularities
and also aggregation methods (for example, Max aggregation)
for the purposes of event retrieval, we went forward with top-
quartile due to its predictable performance.

1.3 Event Content Description (ECD) Generation

For the 10EX and 100EX conditions, in which we have event
training clips to be used, we consider the problem of generat-
ing ECD from VCDI in the framework of the following figure.
Especially we are interested in the aspect of semantic modeling.
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Figure 11: Different tasks correspond to different choices of optimal
features.

To handle the diversity of video contents, we consider several
representations for a video, namely frame-level, keyframe-level,
and interval, and video level. For each level, we take semantic
VCDI with the same format, and create different ECD genera-
tors.

The simplest ECD generator is to count the frequency of dif-
ferent concepts in event kits. For example, we count in the Birth-
day party event the frequency of concepts Adult”, “Individual”,
”Activity” are 0.863, 0.988, 0.904, respectively. As a result, the
ECD investigator will rank these concepts in the order of fre-
quency.

The benefit of counting method lies in the fact that it is simple
and intuitive, and we can easily use this method for incremental
and distributed computing. However, this simple method over-
looks the correlation between concepts, as well as the distribu-
tion in the background set. We will develop two other methods.

The second method is entropy based method. It considers
the dependency and overlapping of multiple concepts, and se-
lects the concept which maximizes the conditional entropy for
the given event. The following figure illustrates how we select
concept using entropy based method.

The third method treats the ECD model as a combination of
decision trees, where each node denotes a selection of semantic
concept. By traversal in the tree, we can find multiple paths from
node to leaves. Every path corresponds to a logical expression.
This method is easy to interpret, and fit for the scalable learning.
However, we need make more efforts to make use of the logical
expression in MER and MED retrieval.

The fourth method is to try greedy method to search for the
semantic queries. An example is illustrated in Fig. 11.

The last method is to combine logical expression for event
query generator. We realize that not every possible logical ex-
pression can be used for the retrieval system. On the one hand, a
complicated event query will be difficult to interpret intuitively.
On the other hand, a very long event query will make the re-

trieval time very long. The non-friendly event query interface
will prevent the user from effectively interacting with the sys-
tem and hence reduce the use of the system. Even worse, if we
cannot attract users to use our system, we will not be able to
leverage human intelligence to design effective event models.

As a solution, we currently use a limited number of logical
operators: weighted combination, average, AND, OR. Although
the limited operators may decrease the performance a little bit,
we believe it is better to focus on user interface than to improve
the performance marginally.

Comparing AND and Weighted Operators: AND (average)
and Weighted Average are two popular operators in our systems.
We think it is worth the efforts to compare the performance of
two operators. Take E012 as an example, the AND operator is
”Parade AND Podium outdoor AND Street scene AND Drag-
onboat AND Social and religious event”.

We see the following observations in our experiments: The
performance of weighted operator is slightly better than the
AND operator, however the difference is not significant when
there are only a few examples. There is a gap between the per-
formance on training set and testing set.

1.4 Event Search

We centered the attention of our Event Search system around
the human user. We implemented semantic concept keyword
based search to enable event-based search by users. The user
interacts with our system through an interface (represented in
Figure 12) where he can insert various combinations of semantic
query terms, from the vocabulary of 1447 concepts in our audio-
visual taxonomy.

Among the functionalities of the Event search interface are
keyword auto-completion and, most importantly, the possibility
of composing multiple keywords searches using logical expres-
sions, namely AND, OR and expressions grouping via paren-
thesis (see detail in Figure 12 (a) ). For any given query, the
interface returns the ranked list of videos in a given collection,
where each video is represented by a mosaic image icon of its
keyframes. Also, the score of the classifiers being queried is re-
ported below each clip mosaic. By hovering over the video icon,
a animated gif of the video keyframes is played, giving the user
a quick glimpse of the content of the full video. By clicking on
the video icon, the user is presented to the video VCD browser
view (Figure 12 (b)), which allows to further verify the Semantic
evidence that prompted the video in such rank position, as well
as a quick summary of the top ranked concepts for each facet in
our taxonomy on the given video clip. The user can also find
clips which are semantically similar (i.e., for which the top scor-
ing semantics for each facet have similar scores) to a given one
by clicking on the LIKE button under its icon. The system will



automatically generate a weighted logical expression on such
semantics in order to retrieve similar clips.

The system allows disjunctive combinations of conjunctive
queries. The terms and clauses can be optionally weighted or
thresholded. Example queries are as follows:

e Car AND Towing_a_vehicle

e Zoo X Zebra X Animal_grooming X Animal X An-
imal_feeding X -1 Adult X Brush_hairr ACTIONS X
Clean_ACTIONS X Barn X -1 Auto_part X Audio_animals
X Audio_animal

e Home_appliance AND Kitchen AND Kitchen_appliance
AND machine_operation_and_-maintenance_activity AND
Home_Appliance AND Adventure_Land_Sport AND Dis-
posal AND laundromat

Multiple conjunctive operations are supporting including
AND (average), X (product) and MIN (minimum). All oper-
ations are performed over probabilistically normalized concept
classifier scores, scaled between 0.0 and 1.0 (Section 1.2.7), and
aggregated to video level representations as described in Section
1.2.11.

In the cases of 10EX or 100EX, where event kit videos can be
used to aid the search, the event content description generation
module is used, as described in Section 1.3, to suggest a query
expression, which can then be edited by the user.

1.5 Submitted Runs

We submitted 9 pre-specified event search runs, and 9 ad-hoc
event search runs for each given event. These included the 3 ex-
emplar cases: 0 examplars, 10 examplars, and 100 examplars.
In addition, for each event and exemplar condition, we sub-
mitted results for each of three modalities: visual only, audio
(non-ASR) only, and combined, according to which concepts of
the semantic taxonomy concepts we employed to generate event
search queries.

In the following we describe the details of how the submitted
runs were produced.

Pre-Specified:

e (OEX: a different person from our group was given the list
of concepts in the taxonomy and randomly assigned event
queries to produce by using the system interface loaded
with the MEDTEST collection, without any ground truth
information about the events visible in the interface. The
user would then proceed to produce the query by qualita-
tively analyzing the top page (with 50 items) of the ranked

results produced by the weighted logical expression he
generated as query. The preduced queries were then used
to score the PROGTEST collection and produce the sub-
mitted results.

e 10EX and 100EX: for these conditions, the ECD Generator
was used on the EventKit and Event Background collection
to produce an automatically generated query, to be used as
suggested starting point for a user who was then free to edit
and modify such query by using the system interface on the
unlabeled MEDTEST collection, as in the OEX condition.
The only difference between our OEX and 10(0)EX runs
was only in the suggested query strings.

Below is the complete list of pre-specified events submitted
runs.

- IBM-Columbia_-MED13_FullSys_PROGAII_PS_OEx_1:
Pre-Specified, 0 exemplar condition, visual + audio
combined.

- IBM-Columbia_ MED13_FullSys_ PROGAII_PS_10Ex_1:
Pre-Specified, 10 exemplar condition, visual + audio
combined.

- IBM-Columbia_-MED13_FullSys_ PROGAII_PS_100Ex_1:
Pre-Specified, 100 exemplar condition, visual + audio
combined.

- IBM-Columbia_MED13_VisualSys_PROGAII_PS_OEx_1:
Pre-Specified, 0 exemplar condition, visual only.

- IBM-Columbia_-MED13_VisualSys_ PROGAII_PS_10Ex_1:
Pre-Specified, 10 exemplar condition, visual only.

- IBM-Columbia_-MED13_VisualSys_ PROGAII_PS_100Ex_1:
Pre-Specified, 100 exemplar condition, visual only.

- IBM-Columbia_-MED13_AudioSys_.PROGAII_PS_0Ex_1:
Pre-Specified, 0 exemplar condition, audio only.

- IBM-Columbia_ MED13_AudioSys PROGAII_PS_10Ex_I:
Pre-Specified, 0 exemplar condition, audio only.

- IBM-Columbia_MED13_AudioSys_PROGAII_PS_100Ex_1:
Pre-Specified, 0 exemplar condition, audio only.

Ad-Hoc:

e (OEX: for this condition, the system was used exactly in the
same manner as the pre-specified case.



(ot o e | e | e

Histary: 10 C T _activity AND 20 C| AND 20 AnD ¢
10 Classifiers@Transportation_activity AND 20 Classifiers@Car AND 20 Classifiers@Driving AND Classifiers@5edan |
Add related concepts: AUTO RACING | BASKETBALL COURT OUTDOOR | BOATHOUSE | =us | CAR | DINER OUTDOOR | FIRE STATION | cenerec stors cutooor | LAND VEHICLE | L1GHT TRUCK | MANUFACTURED

mivzasn | MOTEL | MOTOR SPORT | OTHER ACTION ON VEHICLE | PARKING GARAGE OUTDOOR | PARKING LOT | SEDAN | skaTerARK | Tawns court cutoccr | TOLL PLAZA | TOWING A VEHICLE | TRUCK | ursan scene | V

Search Results

10 Classifiers@Tr ... <] Pageiof31z [»] W] Gotopage [1[¥] Results 1to 80 of 24556

(0.718) (0.715) | ix=
Tranegpzristion sty [2.75]

Car0.7] Driving [0.85] Car[0.78] Druing [0.5]
Siaan[0.7] Segan [0.55]

(0.689) =

Oriving [0.45]
18]

e " 0.689) (0.667) ez
[0.75]

Trarspzriatien szt 0.
Car[0.58] Drving 18,74 Car[0.75]| Driving [0.5] (Car(0.75] Driving [0.51] Car[0.74] Driving [0.58]
Sedan [0.53] Sedan [0.77] T s I Sedan [0.77]

QUERY HVC883435.mp4 (0.668)
Semantic Concepts: [ Sort b 1L Displ [jabove thresholdi T i nination scores|
Actions facet Activity facet Animal facet Audio facet Object facet People facet Setting facet Type facet

Non human event [0.98] | Non snimal [0.95] | Audioother[1]  Object[1]  Non viewof human [0.99]  Hon building view [1]  Dominant color [1] |
Buto racing [0.96] | whale [0.78] Audioski[1]  sedsn[0.94] | Nonpeople[0.99]  Bestdeck[0.95]  Galor[o.97] |
Non human activity [0.961 ] Crab [0.75] Audio wadding [0.96] | Truck[0.83]  MNonhuman[0.88]  Skyscene[0.98]  Non chart type [0.96]]
Bobsledding [0.951° 1 Killer whale [0.73] Budie museum [0.5]  Land vehicle [0.93]  Automobile driver [0.9] | Pilothouse indoor [0.98] | No horizen [0.91]
Non sport [0.58] T Goldfish [0.69] Budio biking [0.94] " Ship[0.92]  Human body view [0.85]  Hon sky scene [0.98] | Rubber plastic [0.86]
istar Spar [B:55] I Pig=on [0.56] Budio beach [0.93] | Fire truck [0.51] | People vith affiliation [0.81] Harber[0.88] ] Gray [0.84]
(Ehanging tira [0:93] I Duck [0.53] Budio traffic [0.52] | Vehida[0.8] ] Veterinarians [0.75] Arrival gate outdoor [0.98] | Orange [0.8]
_ Svan [0.52] Audic ene person [0.86] _ Human hands [0.67] _ Red [0.78]

Audic warfare [0.86] | Mechanic [0.66] Glass [0.75]
Fishing (0821 | Budio street [0.81] [CSRIOESIT ooy r0.64] RUAFEVIOSZIN cteastul [0.73]
Disturbence [0.9] | Audio bird [0.8] BEEEESTI £y human body [0.5] [Bitdeer [0:571 T yetal [0.71]
N T - Audic musicperformance | UaREEUERI0.67] U oo 10.59] Gamerssm (0981 gectic indoor lighting
Driving s ear [0.88] | [0.73] Motoreyele cop [0.51] Poslroam home [0.96] | [0.7]
Surfcasting [0.89] | Audic nonmusicperformance _ Matte [0.68]
Eathing baby [0.08] 1731 ambulancs vehid= [0.84] vinyl linolaum [0.66] (b)

Figure 12: MED Event Search interface. (a) the user can insert any combination of semantic keywords and the interface will display
a retuned list of results with keyword scores under each mosaic image. (b) by clicking on the mosaic icon, the user is prompted to
a detailed view of the taxonomy facets top scoring concepts for the given clip.



e 10EX: for this condition, we ingested the EventKits (10
per event) and Event Background videos into the system,
together with the ground truth. Multiple users were then
randomly assigned to event searches, to be performed on
such collection. The event ground truth for any given se-
mantic query was exposed to the user as a feedback to re-
fine/improve such query under the form of: 1. color coded
visual information (green box around mosaic thumbnails
of true positives in the first page of returned search results,
read box for negative ones); 2. Average Precision (AP)
score at full rank of the given search. The rationale behind
the use of such interface with exposed ground truth was
to provide the means to a user to produce a query both se-
mantically meaningful (since a human was picking the key-
words to insert in each query) and well performing (since
the user could adapt his query to improve AP score and
number of true positives in the first page of returned results.
Figure 13 reports the detail of the feedback-based interface
for the EventKits + Background collection given a query
for Event EO37 - Parking a vehicle. In this particular case,
we also exploited redundancy, under the form of multiple
users being assigned the same event search task. The quali-
tative results on the MEDTEST collection (visible through
the system interface) and the quantitative results (in terms
of AP at full rank) a newly formed collection containing
the EventKit videos (10 per event) as positives and the Re-
searchSet videos as negatives was used to select or combine
queries from multiple users.

e 100EX: for this condition, differently from the pre-
specified case, we directly employed the queries automati-
cally generated by the ECD Generator applied to the Even-
tKits (with 100 videos per event) and Event Background
collections.

Below is the complete list of ad-hoc events submitted runs.

- IBM-Columbia_ MED13_FullSys_ PROGAIl_AH_0OEx_1:
Ad-Hoc, 0 exemplar condition, visual + audio combined.

- IBM-Columbia_ MED13_FullSys_ PROGAIl_AH_10Ex_1:
Ad-Hoc, 10 exemplar condition, visual + audio combined.

- IBM-Columbia_-MED13_FullSys_ PROGAIl_AH_100Ex_1:
Ad-Hoc, 100 exemplar condition, visual + audio combined.

- IBM-Columbia_-MED13_VisualSys_ PROGAIl_AH_0OEx_1:
Ad-Hoc, 0 exemplar condition, visual only.

- IBM-Columbia_-MED13_VisualSys_PROGAIl_.AH_10Ex_1:
Ad-Hoc, 10 exemplar condition, visual only.
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Figure 14: Our system in green. Both quality and quickness are
mutually attainable.

- IBM-Columbia_-MED13_VisualSys_ PROGAII_AH_100Ex_1:
Ad-Hoc, 100 exemplar condition, visual only.

- IBM-Columbia_-MED13_AudioSys_.PROGAII_AH_OEx_1:
Ad-Hoc, 0 exemplar condition, audio only.

- IBM-Columbia_ MED13_AudioSys_ PROGAII_AH_10Ex_1:
Ad-Hoc, 10 exemplar condition, audio only.

- IBM-Columbia_-MED13_AudioSys_PROGAIl_AH_100Ex_1:
Ad-Hoc, 100 exemplar condition, audio only.

2 Multimedia Event Recounting (MER)

The current IBM-Columbia MER system is based on the close
connection between our ontology of semantic classifiers and the
functional aspects of natural language. Our system is informed
throughout by human psychology and user studies. We outline
the nine people-oriented principles behind our MER processing
pipeline, and give the reasons and evidence for each of our nine
design decisions.

These decisions have led to a system that produces above av-
erage clarity of explanation (NIST MER evaluation criterion 2),
while using less time for an analyst that is less than one-sixth
video time (NIST MER evaluation criterion 3). This places the
time performance of the the IBM-Columbia system well above
all other NIST MER competitors. Fig. 14, which shows our
system circled in green, illustrates that our clarity score (hori-
zontal axis) and our time efficiency (vertical axis, representing
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Figure 13: MED Event Search interface with ground truth feedback for EventKits (10 examplars per event)+Backgoround collec-
tion. The feedback on the query [10Transportation_activity AND 20Car AND 20Driving AND Sedan] is provided under
the form of 4 true positives (highlighted in green) results reported in the top 10 of the ranked list, as well as the AP score at full

rank of 0.244.

speedup on a logarithmic scale) indicates how both quality and
quickness are mutually attainable. In fact, the lines represent the
linear regression of the two against each other: overall, the faster
systems were also the clearest.

For each video that our MER system was presented for re-
counting, we were given the ECD terms used to define the event,
plus a matrix of classifier scores to represent the response of the
MED system. Rows of the matrix represented normalized clas-
sifier outputs, and columns of the matrix represented two-second
intervals of the video. Our goal was to determine the best local
snippets of the video that would support the overall global MED
determination of event presence.

We exploited the following observations:

1) Semantic ontologies are like natural language: People tend
to view and describe the world using a number of categories,
at various levels of generality. Our visual, sound, and motion
classifiers have been embedded into an ontology tree that has
approximately 1400 concepts. This tree is actually a forest of
“facets”, each of which reflecting a generic category of con-
cepts, such as “people”, "actions”, "settings”, etc. Each of these
dozen facets have been designed to reflect the structure of what
are called ’thematic roles” in linguistics. Roughly, these corre-
spond to subject, verb, prepositional phrases of place, etc. Each

facet then has further multiple levels of specificity, for example,
“object”, “animal”, “vertebrate”, “mammal”, ”dog”, etc. This
provided our MER system with a wide range of tradeoffs for
selecting the proper verbal output, based on classifier accuracy.
People prefer specific, accurate descriptions over generic, inex-

act descriptions, and so does our MER.

2) MER has different goals than MED: We had noted in prior
work that people generally do not edit YouTube videos, and
so there is usually great visual and audio redundancy within a
video. And, at the same time, there are few if any shot bound-
aries within a video. We therefore found it helpful in design
to view MED and MER as achieving different purposes. MED
finds videos that are examples of events, based on global in-
formation that is distributed over the entire video’s length. In
contrast, MER persuades people of the correctness of our de-
tection, based on local information that is usually perceivable
within seconds. MER therefore seeks the minimal amount of lo-
cal evidence that is consistent with the global MED determina-
tion. This enabled a very high degree of temporal compression,
as the NIST competition confirmed.

3) People use small queries: Through experimentation, we
noted that people tended to use quite short query strings with
our video library browser, and not the full 1400 concepts we



have made available. So, our MER output was also designed to
describe video contents by only using the actual query strings
used in MED triage and retrieval (i.e., the ECD). This resulted
in MED passing to MER a very lightweight matrix of classifier
scores to process. Usually a video has only between 2 and 30
rows, one per classifier, and about 75 columns, one for every
two seconds of video. Such a matrix can be easily experimented
with and tuned to match user expectations.

4) Video segmentation should be semantic: In prior work, we
documented that people’s attention span in viewing videos is
limited by short term memory. This is also reflected in studies
on the well-documented distributions of edited shot lengths. But
we have found through experimentation that even in YouTube
videos, shot-like semantic segments can be found that are de-
fined by temporal clusters of event-specific semantics. These
correspond to units of attention, rather than units of color, tex-
ture, motion, or sound. Our segmentation of videos for MER
is therefore purely based on semantic coherence, which we bor-
rowed from our previous work; it found that video memory is no
longer that about 30 seconds.

5) Description should focus on accuracy: We have noted in
the literature of discourse that people have a good sense about
how to trade off specificity against accuracy, and how to choose
the appropriate level of nouns and adjectives to do so. We
also noted through experimentation and through user studies
that people also tended, as a rule, to search for videos using
“middle level” concepts, “tree”, rather than either “plant” or
“maple”. Further, they tended to describe videos using accu-
rate super-concepts (“definitely an animal”) over approximate
sub-concepts ("maybe a dog”). We therefore designed our al-
gorithm to do so likewise, based on an information-theoretic
measure of weighted probability, which modifies the probabil-
ity of of a classifier reliability, with an approximate measure of
the information gain that a term provides within the ontology
tree. Thus, we can decide, in a human-tuned manner, whether to
say “animal”, "dog” or "boxer”, even if the classifier scores are
inconsistent.

6) Snippets should show discriminating concepts: We noted
in the psychology literature that people tend to remember events
differentially, by what makes them distinguished from other
events, rather than absolutely by the content. We noted through
experimentation that it is more often the second best video snip-
pet that is more salient to a viewer, since the first best snippet
tends to win on total points, but not on salient uniqueness. We
also noted that, the longer the query string and the longer the
video duration, the more snippets may be needed for “insurance”
coverage for MER. We have tuned our snippet sorting and se-
lection algorithm to reflect this: we prefer to display first those
snippets that are a bit off-center, then follow them with more
ordinary ones.

7) People like short text: In our MER experiments, we noted
that people have a limited ability to absorb a long list of con-
cepts. We found that there was a small fixed limit to the number
of concept words that were helpful in each textual description;
that length is about five.

8) MTV-like snippets say enough: It is clear that people
are very good at understanding imagery even at tachistoscope
rates. Through our experimentation, we found that video snip-
pets rarely needed to be longer than four seconds in order to be
an effective proof of event presence. Our algorithm currently
finds the best internal four second subsegment of each full se-
mantic segment, in order to serve as a representative of the full
snippet. We are aware this is only a heuristic approximation; in
fact, our evidence suggests that sometimes four seconds is too
long.

9) Concise telegraphic textual output is best: People tend
to ignore function words when they read; our user studies
on our prior MER system confirmed this. So, our current
MER text output generator also does. Each semantic segment
with high classifier responses generates a short word list for
each snippet, and uses it uses typography to make its point
quickly. A typical output, for example, is: "VISUAL: Birth-
day_party, Bazaar_indoor; ACTION: Blowingcandles_actions;
AUDIO: Noisy_audio, Birthday_audio.” We found that anything
further is ignored, anyway.

In summary, these observations and studies have led to MER
algorithms that greatly exceeded the state of the art in analyst
time savings, while being comparable to the state of the art in de-
scription clarity. We continue to explore further improvements,
including the possibility of deriving MER descriptions indepen-
dently of the event description.

3 Surveillance Event Detection (SED)

4 Overview

We present a system for detecting events in surveillance videos
and evaluate it in the SED task of TRECVID. The evaluation
consists of two parts: automatic event detection (retrospective)
and interactive event detection with human in the loop (infer-
active). The retrospective system uses a joint-segmentation-
detection framework with temporal interdependencies among
events considered to enhance detection. The interactive sys-
tem is designed to enable simultaneous verification of multiple
events with temporal relationships. This has been shown in our
experiments advantageous over looking at a single event alone
each time as the approach leverages the strong temporal patterns
exhibited in the data. With this design, we further propose a
method to present detection results to the end user effectively by



risk analysis, which ranks events by combining the margin be-
tween top two candidate detections and their temporal relation
ships.

5 Automatic Event Detection

In the retrospective task, unlike most previous work on event
detection that treat video segmentation and event classification
separately [10], our approach performs video segmentation and
classification jointly with a temporal model. The motivation be-
hind temporal modeling is to exploit temporal dependencies that
often exist between events to enhance detection.

Our classification model is trained discriminatively using
Multi-class SVM [3] with Fisher Vector (FV) encoded features
[13] while the temporal relationships between events are mod-
eled by priors estimated using ground truth. Note that we treat
background clutter as a no-event class, which is trained together
with the other 7 events of interest using [3].

We formulate the problem of joint segmentation and classifi-
cation by a general quadratic integer programming framework.
Given avideo X, let {t1, 2, ..., t» } to be n segmentation points.
The i, segmentation of X is S;, where S; = X(¢i,tit+1).
We assign each segmentation S; into a total K binary variables
¢k e [0,1],k = 1,2,..., K, where ¢¥ = 1 indicates that the
label of segmentation of S; is &k (including no-event). The ob-
ject function f(X, K) that should be maximized for an optimal
segmentation can be written as follows,

K ,
>k KCECE

@
where ©*(S;) is the SVM score and p’ (k, k/) is the prior rela-

’
tion weight between event k and & . There are some constraints
for the objective function:
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We show that the optimization can be solved efficiently by
dynamic programming if only first-order dependency is con-
sidered, i.e. n = j + 1 in the equation above. Given
any video flip X(g,,) with length u, f(X(ou),u,K) =
argmax; . 1o, f(Xou-1,0 = LK) + f(X@u-1,1K).
lmaz and lmirn are the detection length of video frames.

6 Interactive Event Detection

Compared to our interactive system from last year, we made two
significant changes to the system this year. Our first contribu-
tion is development of a system that allows for verification of
multiple events simultaneously together with temporal patterns
(Fig 6). Our second contribution is development of a method
to present detection results to the end user more effectively by
risk ranking. Here the risk score of a detection (including non-
event) indicates the value or impact that the detection being ver-
ified, if corrected by the user, has on the system performance.
In another word, a false detection with a lower risk score will
attribute more to the performance after it gets corrected during
the interaction. In our system, we compute both single events
and pairwise events with temporal dependences and present the
results to the user in an ascending order of the risk scores of all
events.

Next we describe how we measure the risk of detection by
maximizing the margin of top two candidate events for each de-
tection while temporal relation of events and potential penalty
weight are also considered. Given a segment S;, let the top
two detections be the kth and k’th event with scores ¢" (S;) and

©" (S;). The formulation of the risk score for a single event can

be expressed as:
. W,
wy
C))

where w,, is the cost of a miss detection, wy is the cost of a
false alarm and ||S;|| is the length the segment S;. p(k),k €
1,2,..., K is the occurrence prior of event k learnt from the
ground truth. Similarly, we can develop the formulation for a
pair of events, which is omitted here due to space limit.

[1Sil

7 Experimental Results

Retrospective Task The joint-segmentation-detection approach
requires event classification at varied lengths of segments. In our
experiments, we trained a classifier for each event using Multi-
class SVM at a window size of 30, 60, 90 and 120 frames, re-
spectively. We then performed segmentation by dynamic pro-
gramming as described in section 2. It’s noteworthy to mention
that our approach performs event classification and segmenta-
tion simultaneously, so no thresholding is needed for the final
detection. in Table 1, we show the results of our approach us-
ing 1) dynamic window sizes (d-Joint) and 2) a fixed window
size (i.e. 60 frames) (f-Joint) on the evaluation SED data set,
and compare the results with the Fish Vector encoding approach



Event Name: CollToEar

Figure 15: Interactive System Design Panel.

Table 3: DCR on Eval Dataset of Retrospective

Method FV-60 | f-Joint | d-Joint
CellToEar 1.0007 | 1.0001 | 0.9985
Embrace 0.8000 | 0.8225 | 0.7818
ObjectPut 1.0026 | 0.9618 | 1.0046
PeopleMeet 1.0362 | 1.0524 | 1.0267
PeopleSplitUp | 0.8433 | 0.8837 | 0.8364
PeopleRuns 0.8346 | 0.8488 | 0.7887
pointing 1.0175 | 1.0626 | 1.0045

from our 2012 submissions. Clearly, our proposed approach out-
performs the FV-based approach, demonstrating the effective-
ness of temporal information.

Interactive Task We reported below the formal evaluation
results provided by NIST, to exam the effectiveness of our pro-
posed interaction methods. In table 2, we compared the actual
DCRs on the evaluation set using three interaction strategies:
(1) no interaction (Retro), (2) event ranking based on detection
confidence scores (Confidence), (3) event ranking based on risk
scores (Risk). We observe that an interactive process can im-
prove the system performance. With risk analysis, the improve-
ments are significant compared to the naive approach purely
based on detection confidence scores.

8 Semantic Indexing (SIN)

For our Semantic Indexing (SIN) submission concept detection
task, we submitted score results from 3 variants of our IMARS
modeling framework. Much of the IMARS framework is de-
scribed in Section 1.2. However, there are some variations to
the system used for SIN as compared for MED. The differences
are described in the following sections.

Table 4: DCR on Eval Dataset of Interactive

Method Retro | Confidence Risk
CellToEar 0.9985 0.9943 0.9956
Embrace 0.7818 0.7403 0.7337
ObjectPut 1.0046 1.0053 0.9928
PeopleMeet 1.0267 0.9875 0.9584
PeopleSplitUp | 0.8346 0.8700 0.8489
PeopleRuns 0.8346 0.7383 0.6445
pointing 1.0045 0.9800 0.9781

8.1 Data Collection

We used 1 frame per shot, those supplied with the IACC
datasets. For the test set, where multiple frames per shot were
given, we ran our classifiers on the first frame in the shot.

Data was organized to collect up to 5000 positive and 5000
negative examples per concept.

8.2 Feature Extraction
8.2.1 SIFT Descriptors

In addition to low-level features described in MED, we uti-
lized 5000 dimensional SIFT descriptors extracted around Har-
ris Laplace interest points. Each keypoint is described with a
128-dimensional vector containing oriented gradients. We ob-
tain a visual words dictionary of size 1000 by running K-means
clustering on a random sample of approximately 300K interest
point features, we then represent each image with a histogram
of visual words. We extracted two codebooks, starting from two
different random samples of points. We used soft assignment
following Van Gemert et al. using sigma = 90. This descriptor
was extracted using the executable publicly available from the
University of Amsterdam. We extracted also variations of the
SIFT descriptor in different color spaces, namely rgb, hsv and
opponent channels.

8.2.2 High-Level Semantic Descriptors

We utilized 709 of our semantic concept detectors, trained with
both linear and non-linear SVMs, as a low-level feauture for
concept modeling. In internal data split experiments, the se-
mantic feature descriptors were our top performing features, al-
though linear performed similarly to non-linear kernels.

8.3 Ensemble Learning

As described in Section 1.2.7, the IMARS concept learning
pipeline utilizes an ensemble learning approach from a collec-
tion of “bags,” which are data subsamples across both feature



and data space. Within each bag, the SVM learning problem
can be constructed using a variety of methods to deal with data
imbalance.

1.

84

8.5

Data in the majority class is simply randomly undersam-
pled until it is balanced with the minority class.

. Data in the minority class is oversampled using a propri-

etary variation of SMOTE.

. Data is not balanced.

Submitted Concept Detection Runs

. For the first run, we used a data sampling bag size that bal-

anced the data depending on how many positive examples
were available for the concept. Enough balanced bags were
trained to achieve 90% data coverage.

. For the second run, we used data sampling rate at a maxi-

mum of 5000 positive and 5000 negative examples per bag,
with balanced bags of all available data using proprietary
SMOTE variant, 1 bag per feature. Since the validation
split is used to only select features, models were retrained
on all data after ensemble fusion.

. For the third run, we used data sampling rate at a maximum

of 5000 positive and 5000 negative examples per bag, with
unbalanced bags of all available data, 1 bag per feature.
Since the validation split is used to only select features,
models were retrained on all data after ensemble fusion.

. For our fourth run, we performed a rank fusion among our

first 3 runs.

Submitted Concept Pair Detection Runs

. Our first concept pair submission comes from a combi-

nation of concept detectors developed from Run 3, using
Rank Normalization for concept detector fusion.

. Our second concept pair submission is similar to the first,

using sigmoid normalization instead of rank normalization.
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