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Abstract 

We report on our system used in the TRECVID 2013 Multimedia Event Detection (MED) and 

Multimedia Event Recounting (MER) tasks. For MED, it consists of four main steps: extracting 

features, representing features, training detectors and fusion. In the feature extraction part, we 

extract more than 10 low-level, high-level, and text features. Those features are then represented 

in three different ways, which are spatial bag-of-words, Gaussian Mixture Model Super Vectors 

(GMM) and Fisher Vectors. In the detector training and fusion, two classifiers and weighted 

double fusion method are employed. The official evaluation results show that our MED full 

systems achieve the best scores on Ah-Hoc EK10 and EK0, our audio systems achieve the best 

scores in EK100 and EK10 for both Pre-specified and Ad-Hoc tasks. In this report, we will 

analyze the contribution of each component for MED and draw some insights for video analysis.  

Our MER system utilizes a subset of features and detection results from the MED system from 

which the recounting is generated. 

 

1. MED System 
 

In this section, we study our TRECVID 2013 MED system and find that:  

 Semantic features trained by deep neural network can outperform the best low-level features 

we currently have in our MED system.  

 In general, visual features, especially motion features perform better than audio features in 

MED.  

 Ensemble of multiple weight learning methods generally performs better than single weight 

learning method for fusion and is capable of dealing with few-example scenario.  

 Because it is complementary to other features, MFCC has high contribution to the final 

performance of our MED system even it has relatively low single feature performance.  

 Fisher Vector representation can greatly outperform other representations such as 

bag-of-words and GMM for single feature, but when having multiple features, Fisher Vectors 

representation performs no better than other representations.  

 MMPRF is very useful for zero-shot detection scenario.  

 

1.1 System Overall 

 
In this section, we give an overview of our MED systems. As shown in Figure 1, there are four 

key steps in our system. In step one, we perform feature extraction on visual, textual and audio 

modality. In step two, three different representations are used to aggregate the interesting point 

features into video level features. In step three, we calculate the kernel matrices and apply early 

fusion. Also in step three, classifiers are trained to perform the classification. In step four, the 

outputs of different classifiers are combined by using late fusion strategies. 

 



Table 1 summarizes the features used in our system. Among those features, SIFT, CSIFT, TCH, 

Object Bank and DCNN are extracted from key-frames using the methods as described in [6, 12, 

13]. Other features are extracted from videos following the procedures described in [12, 13].   

Given raw features extracted from key-frames and videos, visual low-level features are 

represented by spatial bag-of-words, GMMs [1] and Fisher Vectors [12]; MFCC is represented by 

bag-of-words. Average pooling [5, 6] is used to aggregate key-frame based features into video 

level features. 

 

In this year‟s submissions, for all the tasks, we train both SVM and kernel ridge regression (KRR) 

classifiers [6, 12, 13] using two-fold cross-validations to choose the parameters. Average z-score 

fusion is used to fuse outputs different representations and classifiers for each feature. Ensemble 

weighted double fusion is used to combine the results of different features.  

 

 
 

Figure 1, Informedia MED system illustration 

 

Table 1, Features used for MED‟13 system 

 

 Visual Features Audio Features 

Low-level 

Features 

SIFT [11] 

Color SIFT (CSIFT) [11] 

Motion SIFT (MoSIFT) [3] 

Transformed Color Histogram (TCH) [11] 

Space-Time Interest Points (STIP) [16] 

Dense Trajectory [15] 

MFCC 

Acoustic Unit Descriptors (AUDs)[2] 

Large-scale pooling (LSF) 

Sub-band autocorrelation (SPBCA) [18] 

Log Mel sparse coding (LMEL) 

UC.8k 

High-level 

Features 

Semantic Indexing Concepts (SIN)[10] 

Object Bank (1000 concpets) [9] 

Deep Convolutional Neural Networks 

(DCNN) (1000 concepts) [4] 

 

Text 

Features 
Optical Character Recognition (OCR) Automatic Speech Recognition (ASR) 

 

  

 



1.2  Improvements over MED’12 System 

 
Besides using the features and machine learning methods we used last year [12], this year we 

introduce several new features, representations and fusion methods for MED.  

 

1.2.1  New Features  

 

LMEL -- Log-Mel-based Sparse Coding Features 

These features are learned by training a single layer sparse coder in an unsupervised manner over 

LMEL Features. The features are trained over 7 frame stacked LMEL features (210 dimensions) 

as the input layer and a 60 dimensional output layer with a sparsity factor of 0.02. 

Once the features are learned, encoding and classification is performed using bag of audio words 

approach similar to the one used in the case of MFCC. 

 

LSF -- Large-Scale Pooling Features 

These features are useful for capturing sounds that have certain short-term temporal 

characteristics. To compute them, we extract a number of low-level descriptors, such as MFCC, 

PLP, LPC, Pitch, Loudness, Chroma, Formants, LSP, Signal Energy, Spectral Flux as well as their 

functionals, such as Means, Extremes, Moments, Peaks, Percentiles, Onsets, Zero-Crossing, etc.  

In our implementation, a set of 6500 features is being extracted over 2 second windows in half 

second step. Feature Selection is performed using an Information Gain criterion followed by 

Principal Component Analysis and whitening to reduce dimensionality to 100. These features are 

used both in the K-Means framework and for trainining semantic (“noiseme”) concept detectors, 

as used for audio segmentation. 

 

SBPCA -- Sub-Band Autocorrelation Features 

Feature extracted as described in [18]. 

 

DCNN— Deep Convolutional Neural Networks (DCNN) trained on ImageNet Challenge 2012 

The Features are trained with ImageNet challenge data which contains 1.2 million images and 

1000 concepts. Given the trained models, we score each keyframe by how likely each concept 

exists and sum up scores for keyframes to get video level scores. For details, please refer to [7].  

 

Object Bank -- Object Bank trained on ImageNet Challenge 2012  
We trained 1000 concepts based on ImageNet challenge 2012 dataset with bounding boxes. For 

each concept there are 400~1,300 positive samples, while for the negative samples we chose 

randomly N images from other concepts (about 540,000 images), where N is up to 4 times the 

number of positive samples and its maximum is 2000. For example, if there 600 positive samples, 

we will select randomly 2000 negative samples. We use Deformable Part Model code [9] to train 

our concepts with default parameter settings without part training.   

 

1.2.2  New Representation  

 

Besides using spatial bag-of-words and GMM from last year, this year we also used Fisher 

Vectors as described in our SED reports to represent low-level visual features.  

 

1.2.3 Ensemble Weighted Double Fusion  

 

This year, we still used double fusion [5, 6], however, instead of simple average fusion, we 

learned weights for late fusion. Given the early fusion results and single features outputs, we 

applied different learning strategies to fuse the outputs. Table 2 shows the results of different 

fusion strategies, most of them were first developed and evaluated for the 2013 MED submission. 

We have 10 different fusion weight learning strategies. The first six are different versions of 

regression and classification methods; the seventh considers the correlation among features by 

doing ranking correlation analysis. Features that are highly correlated with other features will be 

assigned lower weights. The eighth one uses the single feature performance to rank the features.  



Features with high single feature performance will be given high weights. The ninth one combines 

the two rankings together. The last one uses leave-one-out performance to rank the features, which 

gives very stable performance compared to other methods. Our baseline (average fusion) is given 

in the eleventh row.  In the results, in which we applied the fusion methods to Pre-specified 

EK100 and Ad-Hoc EK10 [19, 20], we can see that when we have 100 training examples, almost 

all methods are better than average fusion except the weighted correlation methods. However, if 

we only have 10 training examples, regression and SVM classifiers cannot learn weights very well 

and tend to perform worse than simple average fusion. If we combined the 10 weighted fusion 

outputs and average fusion outputs together again using average fusion, we get consistently better 

results, which is shown in the twelfth row. This result is consistent with what we found last year in 

our „double fusion‟ work, which showed that combining multiple fusion approaches yields better 

performance. In our submission, we use the combination of all these different fusion methods.  

 

Table 2, Comparing performances of different weight learning strategies 

 

ID Feature 

MAP on  

Pre-specified EK100 

(MEDTEST) 

MAP on    

Ad Hoc EK10  

(Internal Test) 

1 L2 Logistic Regression 0.3885 0.2569 

2 L1 Logistic Regression 0.3811 0.2482 

3 L2 norm SVM 0.3699 0.2154 

4 L1 norm SVM 0.3722 0.2141 

5 Linear Regression 0.3895 0.2422 

6 L2 Linear Regression 0.3893 0.2439 

7 Weighted (W.) Correlation (C.) 0.3524 0.2829 

8 W. Single Feature (F.) MAP 0.3788 0.2653 

9 W. Corr. + Single Feat. MAP 0.3798 0.2659 

10 W. Leave-one-out 0.3856 0.2804 

11 Average Fusion 0.3621 0.2581 

12 Combined 0.3927 0.2869 

 

1.2.4  MultiModal Pseudo Relevance Feedback  

 

In this year‟s submission, we used a novel method called MultiModal Pseudo Relevance Feedback 

(MMPRF). It is the most important component in the EK0 scenario which doubles the MAP of our 

baseline for both pre-specified and Ad-Hoc events. Besides, it also boosts by an absolute 3% our 

EK10 full system for Ad-Hoc events on our development dataset. 

We propose three variants of MMPRF. MMPRF1 is based on the relevance model and the basic 

idea is to issue a query using the most relevant words found in the top ranked videos and feed 

retrieved rank list back to the previous result in order to improve the performance. MMPRF2 and 

MMPRF3 search the pseudo label set that maximizes the likelihood of all modalities. Then a joint 

model is trained on the pseudo label set using high-level features as well as low-level features. 

MMPRF2 and MMPRF3 differs in the maximum likelihood estimation where MMPRF2 treats 

each modality equally whereas MMPRF3 weights each modality with respect to a prior or the 

query likelihood. Table 3 presents the characteristics of three variants of MMPRF. As we see, both 

MMPRF2 and MMPRF3 are able to leverage low-level features and MMPRF3 further 

incorporates the modality weighting. We used MMPRF3 in our final submission. Due to the lack 

of space, we cannot present detailed algorithms in this report. 

 

 

 

 

 

 

 



Table 3, Summary of characteristics of MMPRF 

 

 

Method Type High-level Feature Low-level Feature Modality Weighting 

MMPRF1 

MMPRF2 

MMPRF3 

Generative 

Discriminative 

Discriminative 

 ● 

● 

● 

 

● 

● 

● 

 

● 

 

We compare MMPRF methods with four baseline methods. The first baseline is the plain retrieval 

result without Pseudo Relevance Feedback (PRF). The second baseline is classical Rocchio PRF, 

where the vector space model with TF-IDF weighting is used. The third one is relevance model 

and the forth one is Classification-based PRF (CPRF) [17]. For Pre-specified events we used the 

training/test split provided by NIST and for Ad-Hoc events we used our internal split. The results 

are summarized in Table 4, where the best result is highlighted. As we see, both MMPRF2 and 

MMPRF3 significantly outperform the basic retrieval method without PRF. In addition, MMPRF2 

and MMPRF3 are also significantly better than the baseline methods on both datasets. The 

event-level comparison of the baseline methods can be found in Figure 2 and Figure 3. 

 

Table 4, MAP (in Percentage) comparison with baseline methods  

Method Runs Pre-specified EK100 Ad Hoc EK10 

Without PRF 

ASR 

OCR 

SIN 

DCNN 

Fusion 

4.7 

2.7 

3.3 

2.6 

3.9 

4.2 

4.8 

1.9 

5.7 

4.0 

Rocchio 

ASR 

OCR 

SIN 

DCNN 

Fusion 

3.5 

2.5 

1.7 

3.1 

5.7 

3.7 

3.6 

0.6 

3.9 

5.6 

Relevance Model 

ASR 

OCR 

SIN 

DCNN 

Fusion 

5.5 

2.3 

2.8 

2.6 

2.6 

2.8 

2.5 

1.4 

5.7 

2.3 

CPRF 

ASR 

OCR 

SIN 

DCNN 

Fusion 

5.0 

2.7 

2.2 

3.8 

6.4 

3.8 

3.2 

1.7 

6.1 

5.9 

MMPRF 

MMPRF1 

MMPRF2 

MMPRF3 

4.4 

9.0 

10.1 

4.3 

7.0 

8.3 

 



 
Figure 2, The event-level AP comparison on Pre-specified events 

 
Figure 3, The Event-level AP comparison on Ad-Hoc events 

 

 

1.2.5  Threshold Learning  

 
We have studied the evaluation metric Minimum Acceptable Recall, R0 [20, 21]. The definition of 

R0 is: R0(q) = Recall(Tq) – 12.5 x rank(Tq)/V, where Recall(Tq) and are rank(Tq) the recall and 

rank at the threshold T for event q, and V is the total number of videos in the search set. According 

to the definition, the threshold plays important role in getting a higher R0 score. Basically, we 

expect higher recall when the rank is lower. Intuitively, the threshold actually reflects the point 

which separates the positive testing data and the negative testing data. In theory, the prediction 

scores for positive testing data and those for negative testing data should have two different 

distributions. One possible way is to find the threshold that differentiates the two distributions. For 

this purpose, we referred to the popular approach in image segmentation which is using maximum 

entropy theory. With maximum entropy theory, we assume that the prediction scores which are 

larger than the selected threshold should result in the maximum entropy among all the data points. 

We adopted the simplest and most common approach that uses histogram-based estimation in 

which the entropy probability density is represented as a histogram. Specifically, the histogram 

approach uses the idea that the differential entropy, 

 
can be approximated by producing a histogram of the observations, and then finding the discrete 

entropy 

 
of that histogram (which is itself a maximum-likelihood estimate of the discretized frequency 

distribution), where w is the width of the i-th bin. Table 5 shows our R0 results for MEDTEST 

 



Table 5, R0 for MEDTEST using maximum entropy scheme  

 
 EK10 EK100 

FullSys  0.2910 0.5005 

ASRSys 0.0469 0.1301 

AudioSys 0.1139  0.1900 

OCRSys 0.0897 0.0047 

VisualSys 0.2465 0.4475 

 

 

1.3 Contribution of each Component      

 
In this section, we took Pre-specified EK100 and Ad-Hoc EK10 to examine the individual 

feature‟s performance and the contributions of each feature, representation and method by ablation 

studies. MEDTEST is used to evaluate the Pre-specified task. For the Ad-Hoc evaluation, we used 

an internal set in which we randomly split the data in half; one half as training data and the other 

as testing data. These evaluations were performed after the submission results were announced to 

help explain what worked. 

 

Figure 4 shows the single feature performance in MAPs. From Figure 4, we can see that DCNN 

and Trajectory are the best two individual features in Pre-specified EK100 task and DCNN 

perform significantly better than other features in Ad-Hoc EK10 task. It is interesting to see that 

DCNN, a high-level feature, can significantly outperform low-level features. Besides   

 

 
 

 
Figure 4, Single feature MAPs for Pre-specified EK100 and Ad-Hoc EK10 

 
Table 6 lists the MAPs of baseline (with all strategies) and the MAPs of leaving out each new 

strategy.  From Table 5, we can see that semantic features (DCNN and Object Bank) contribute 

significantly, especially in Ad-Hoc task. It would be interesting to see how the performance 

changes with the number and the accuracy of the concepts. New low-level features such as LSF 

and SBPCA do not have significant impact. Fisher Vectors do not help much although we obsver 

that Fisher Vectors performs much better than other representations on some features such as 

Trajecotry. Weight learning also has about 4 percent better MAP in Pre-specified EK100 and 3 

percent improvement in Ad-Hoc EK10. We also estimate the upper-bound of the fusion by 

learning weights on our internal test data, which are 0.4035 and 0.2930 for Pre-specified EK100 

and Ad-Hoc EK10 respectively, which shows that our weight learning strategy is quite close to the 

upper-bound when we take the distribution difference between training and testing data into 

consideration. We also show that MFCC has significant contributions to the final systems 

although it has relatively low single feature performance.  

 

 

 

0
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0.2

0.3

Pre-Specified EK100 Ad-Hoc EK10



Table 6, Ablation studies of each feature and new strategies, MAP is used for evaluation  

 

 Pre-Specified EK100 Ad-Hoc EK10 

Baseline 0.3839 0.2709 

-Object Bank 0.3817 0.2690 

-DCNN 0.3651 0.2229 

-Fisher Vectors 0.3795 0.2641 

-Weight Learning 0.3437 0.2475 

-LSF 0.3829 0.2705 

-SBPCA 0.3848 0.2712 

-MFCC 0.3690 0.2560 

 
  

1.4  MED’13 Submission  

 
In this section, we describe the methods used and the time required to generate the submissions. 

The methods used for generating the Pre-specified and Ad-Hoc submissions are the same. 

However due to time constraints some methods were not used during the Pre-specified submission 

and only used in the Ad-Hoc submission. More details will be given in the following paragraphs. 

  

Full System 
Weighted double fusion is used for the full system. Early fusion fuses feature vectors of SIFT, 

Color SIFT, TCH, Motion SIFT, STIP, Trajectories, MFCC, Object Bank, SIN, DCNN and OCR. 

For the Pre-specified run, DCNN was not added to early fusion due to time constraints. While 

fusing results from individual features and early fusion, we performed weighted late fusion. 

Weights were learnt from output generated during cross-validation. Weights were not learnt for 

Pre-specified EK10 run due to time constraints. 

For the Ad-Hoc EK10 runs, we used MMPRF3 for two iterations. In the first iteration, we take the 

10 highest ranked videos in the predicted testing set and add them to the training set. In the second 

iteration, we take the top 30 ranked videos and add them into the testing set. For Pre-specified 

EK10, we did not run PRF due to time constraints. 

 

Visual System 

Early fusion fuses SIFT, Color SIFT, TCH, Motion SIFT, STIP, Trajectories, Object Bank, SIN 

and DCNN. For the Pre-specified run, DCNN was not added to early fusion due to time 

constraints. Weighted late fusion was also performed. Weights were not learnt for Pre-specified 

EK10 run due to time constraints. 

 

Audio System 

For both EK100 and EK10, we use all the audio features except ASR. Given the outputs of SVM 

and KRR classifiers, we first perform z-score normalization and then average late fusion.  

 

ASR System 

We use the same late fusion methods as the audio system to fuse the outputs of SVM and KRR 

classifiers.  

 

OCR System 

Same method was adopted as the ASR system.  

 

In Figure 5 and 6, we compare our full system runs with other teams in both Pre-specified and 

Ad-Hoc tasks using the MAP criterion. From the Figure 5, we can see in the Pre-specified task, we 

are third in EK100 and fourth in EK10 and EK0 [19, 20]. As seen in Figure 6, in the Ad-Hoc task, 

we are the second and almost as good as the first in EK100 and significantly outperform other 

teams in EK10 and EK0.   

 



 

 
 

Figure 5, CMU MED Pre-specified full system performance compared to other teams. 

 

 

 
 

Figure 6, CMU MED Ad-Hoc full system performance compared to other teams. 

 

Table 8 shows the timing information for the submission. Since we used on average 300 cores for 

the submission, the numbers are in the unit of “300 core hours”. For example, for the EK100 full 

run, if we had 300 cores, it will take 2018.2 hours to complete all the required feature extraction, 

event agent training and prediction to generate the EK100 full run submission. 
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Table 8 Compute time information for MED‟13 submission  

 

Runs  

Feature Extraction Event Agent 

Total Event 

 

Examples 

Event  

Background 
PROGTEST Generation Execution 

EK100 

Full 1.9 92.6 1817.4 23.5 82.7 2018.2 

Visual 1.7 82.5 1619.4 16 56.2 1775.9 

Audio 0 1.3 25.9 5.7 19.9 52.8 

ASR 0.1 4.4 86 0.9 3.3 94.8 

OCR 0.1 4.4 86 0.9 3.3 94.8 

EK10 

Full 0.2 92.6 1817.4 5.2 35.4 1950.9 

Visual 0.2 82.5 1619.4 3.5 24.1 1729.7 

Audio 0 1.3 25.9 1.3 8.5 37.0 

ASR 0 4.4 86 0.2 1.4 92.1 

OCR 0 4.4 86 0.2 1.4 92.1 

EK0 

Full 0 0 1051.5 0 8 1059.5 

Visual 0 0 868 0 0.5 868.5 

Audio 0 0 11.5 0 0 11.5 

ASR 0 0 86 0 0 86.1 

OCR 0 0 86 0 0 86.1 

 

 

2.  MER System 

The E-Lamp MER system uses a similar approach to last year‟s submission, adapted to the new 

interfaces. In this new interface, no relationships were computed, but only observations were 

output. Different models were trained for the EK100 and EK10 conditions. For EK0, simple 

mappings between event kits and text or concept names were used instead of mappings observed 

in video exemplars. 

2.1 Features 

We included the following aspects in our MER submission:  

• Event-Relevant and Video-Distinctive Visual Concepts 

• Event-Relevant Keyframe Image Concepts 

• ASR Transcripts 

• Optical Character Recognition Output (Transcripts) 

• Audio Concepts (Noisemes) 

2.2 Visual and Audio Concepts 
We use the histogram of each video semantic class aggregated over the whole video clip. To use 

the visual concepts, we first generated a bipartite graph matching of concepts with the MED 

events. The process flow is shown in Figure 7.  



 

Figure 7: Flow chart of visual and audio concepts processing 

2.3 ASR and OCR Transcripts 
Automatic speech recognition and OCR transcripts that indicate “linguistic (audio)” information in 

the video. (e.g. “okay”, “hello”, “she didn‟t” etc.).  We use TF-IDF according to the word-level 

ASR confidence to calculate the relevant of each ASR word result to the event kit. We then rank 

the ASR Transcripts according to their relevance to the event. For OCR, no confidences were 

available, so they were all set to an equal value. 

2.4  Integration 
The information was integrated in a way similar to last year‟s submission. Approximations to 

confidence (when available from the features) and importance (as given by TF-IDF or bipartite 

graph matching) were computed, and used to rank multiple candidates. Cut-offs (for max number 

to display, confidence, and importance) were used to restrict the maximum number of entries to 

display to suitable values. 
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1.  Introduction 

For this year‟s submission we used the following features:   

 SIFT harrislaplace 

 SIFT densesampling 

 Color SIFT harrislaplace 

 Color SIFT densesampling 

 Motion SIFT (MoSIFT) 

 Deep Convolutional Neural Networks (DCNN). 

 Metadata 

For the DCNN feature we trained 1000 concepts detectors on ImageNet dataset [1] and use the 

detectors output as features for in the SIN training. The metadata of a video includes its title, 

uploader and description information extracted from XML file. Compared with 2012‟s 

submission, this year we used the SIN 2013‟s full label set. The cascade SVM classifiers on 

Hadoop are adopted as our classifier to accelerate the SIN extraction [4]. 

 

2. Submitted Runs 

We submitted 4 runs for the main task. 

 CMU_Maggie: Our Safe run using all features except DCNN and Metadata.  

 CMU_Bart: This run adds DCNN features to CMU_Maggie. 

 CMU_Homer: This run is based on CMU_Bart with two modifications. First junk 

key-frames are detected and removed. Second, the confidence score of correlated 

concepts are propagated using the last year‟s algorithm[5]. 

 CMU_Lisa: This run is based on CMU_Homer and it further fuses the score of uploader 

model [2] using the collective classification presented in [3]. 

We submitted 3 runs for the concept pair task. Our general idea is as follows: training individual 

concept detectors and then enhancing the prediction of pair concept using the related concept 

detectors. 

 CMU_ Todd_and_Rod: This run is the required baseline run where we average the scores 

of two detectors. 

 CMU_Sherri_and_Terri: This run employs the average fusion for the related concepts. 

 CMU_Itchy_and_Scratchy: This run fuses the score of related concepts based on their 

accuracy in the development set. 

3. Experimental Results 

In this section we summarize our results. Table 1 shows our results of the main task. The results 

suggest the DCNN feature is helpful in boosting the performance, though not significantly. Junk 

keyframes removal and concept propagation used in CMU_Homer manage to improve AP by 1%. 

The uploader model with collaborative classification fusion improves the performance by another 

0.8%. 

 

 

 



Table 1. Our final results of the main task. 

 

RUN NAME INF AP 

CMU_Maggie 0.2293 

CMU_Bart 0.2353 

CMU_Homer 0.2452 

CMU_Lisa 0.2537 

 
Table 2 shows our results for the concept pair task. As we see, the related concept enhanement 

fails to improve the performance of our baseline. 

 
Table 2. The final results of our pair concept detection run 

 

RUN NAME  INF AP  

CMU_ Todd_and_Rod 0.1421 

CMU_Sherri_and_Terri 0.1161 

CMU_Itchy_and_Scratchy 0.1117 
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1 Introduction
We present a generic event detection system and a key-pose-based interactive event detection sys-
tem evaluated in the Surveillance Event Detection (SED) task of TRECVID 2013. The generic event
detection system is designed for six events: “Embrace”, “Objectput”, “PeopleMeet”, “PeopleSplit-
Up”, “PersonRuns” and “Pointing”. This system consists of two parts: the retrospective part and the
interactive part and its difference to our previous version [1] is that we add the STIP feature [2]. For
the event “CellToEar”, we design a new key-pose-based interactive system based on a good division
of labor between people and computers.

2 Generic Event Detection System
2.1 Fisher Vector Encoding for Retrospective Event Detection
We used MoSIFT and STIP feature. A GMM model with 128 Gaussians is learned to model the
distribution of the our features. Sliding window detection is performed. Then each sliding window
is represented as a Fisher Vector. Models are learnt using Linear SVM for each of six events:
“Embrace”, “Objectput”, “PeopleMeet”, “PeopleSplitUp”, “PersonRuns” and “Pointing”. The final
decision is thresholded by the MinDCR value at the training set. Finally, average late fusion is used
to combine the two features results.

2.1.1 Fisher Vector Encoding
Fisher Vector Encoding utilizes a Gaussian mixture model (GMM) Uλ(x) =

∑K
k=1 πkuk(x) trained

on local features of a large image set using Maximum Likelihood (ML) estimation. The parameters
of the trained GMM are denoted as λ = {πk, µk,Σk, k = 1, · · · ,K}, where {π, µ,Σ} are the prior
probability, mean vector and diagonal covariance matrix of Gaussian mixture respectively.

2.1.2 Multiscale detection and Non-maximum suppression
Ideally, we need to search over different scales and different step size to locate the exact event in
the video sequences. However, it is impractical for our current sliding window framework. For
example, the maximum length of PersonRuns event in the Dev dataset is 1000 frames while the
minimal length is 10 frames – such diversity of event duration makes the computation cost too high
for us can afford. Instead of using exhaustive search, we select three scales which are closest to the
average duration of each event and select the scale with highest score.

2.2 Interactive Event Detection
We attempted to address two central problems of an interactive surveillance event detection system:
(1) detection results visualization and (2) user feedback utilization. Because of the limited time
available for interaction, the system design was driven by efficiency considerations from both these
two perspectives. Please refer to [1] for details.

3 Key-Pose-Based Interactive Event Detection system
3.1 Motivation
Among all seven events in SED, the “CellToEar” event is the hardest to detect. This year, we have
designed a specific method, namely key-pose-based interactive method, for this event.

Fig. 1 shows sequential images of a representative “CellToEar” instances. According to the
TRECVid 2009 Event Annotation rules, the frame 1 is the start time (“When the subject starts
to move the phone to his/her head”) and the frame 6 is the end time (“When the phone reaches the
head”), and the frame after frame 7 is not considered as the “CellToEar” event. From Fig.1, it can be
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Figure 1: An instance of the “CellToear” event.
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Figure 2: Key pose based interactive event detection system architecture.

easily observed that following the “CellToEar” event, there is usually a stable state when a person
talks on the phone (We call this state as “a phoning stage” throughout this report).

The duration period of a “CellToEar” event is very short. Thus in the complex scene with heavy
clutter, it is generally hard to capture this motion information by using the traditional descriptors,
for example, STIP [4]. During the phoning stage, a person always keeps a stable pose of holding a
cell phone on his/her head, which can be easily observed in Fig. 1(We call this pose as “a phoning
pose” throughout this report).

Based on the above observation, we convert the “CellToEar” event detection to the problem of de-
tecting phoning poses. Compared to the conventional strategies, our mechanism makes the problem
easier. In addition, since the phoning pose can be located in a 2D image patch, we can readily adopt
off-the-shelf multi-scale and sliding window techniques to search these poses in images with com-
plex background. After we get the phoning pose locations, an user can then look back in time to find
the occurrence of a “CellToEar” event using the interactive system.

3.2 System Framework
As demonstrated in Fig. ??, our “CellToEar” interactive detection system includes two main com-
ponents: (1) automatic key pose detection and (2) user interactive search.

3.2.1 Automatic Key Pose Detection
In order to automatically detect phoning poses in videos, we train a specific model for each scene
since four scenes are very different (We did not process the videos from camera 4 because there are
almost no “CellToEar” event). The main steps are: 1) a linear SVM model; 2) the multi-scale and
sliding window technology using for detecting phoning poses in images.

In the first step, we manually annotated around 290 positives and randomly sample 22,155 negatives
from each scene in development data. In order to avoid large variation of poses, we just annotated
the upper body of a person with the phoning pose. In this way, most of positive samples are similar
even though they are from different scenes. For example, the poses from both sitting persons and
standing persons are similar to each other, which can be easily seen in Fig.??. Another benefit of
the positive samples generated like this is that we can use all positives (totally 1,448 positives) from
all 4 scenes while only utilize the negative ones from one scene of four to train a specific model for
a specific scene. The model so trained inclines to be more stable against the scene.



Figure 3: Three visualization parts in user interactive interface for “CellToEar”. (a) Sorted pose detection
results, (b) the traced sub-images for a fixing local area, (c) the full image with a rough bounding box annotation.

The histogram of gradient (HOG) feature is employed to describe the phoning pose image for two
reasons. The first one is that a HOG descriptor is suitable for describing 2D non-rigid objects such
as human. The second one is that the HOG feature can be computed efficiently in sliding window
detection. Before training the SVM model, we applied the explicit feature kernel maps [3] to the
HOG features. This helps enhance the computational efficiency in both training and testing.

In the second step, we divide the scene into several portions and in each one different scale ranges
are adopted according to the annotation data information. Furthermore, we applied the motion mask
acquired from background substraction to further reduce computation. This can also help reduce the
background clutter.

Since the phoning poses usually last a relatively long time, the used frame stride is set as 12 for
saving computation time. After we get preliminary detection results, we sort all the obtained results
from the same scene based on SVM classification scores. Finally, we aggregate all sorted results
from different scenes to get the final results, as shown in Fig. 3(a), according to the proportion
information of scenes which is estimated by using development data.

3.2.2 User Interactive Search
Our user interactive interface contains three main visualization windows: 1) The first one shows the
final sorted detection results, as shown in Fig.3(a); 2) The second one shows the sub-images traced
in a fixing local area, as shown in Fig.3(b); 3) The third shows the full image of the scene, as shown
in Fig.3(c). Firstly the user needs to quickly find the phoning pose in the first window and click it by
using a mouse. After that, the interface system will automatically update the corresponding contents
of the second and third windows. For example, if the user clicks the last pose in the first row of Fig.
3(a), the corresponding contents will be shown in Fig.3. Then by using the keyboard, the user can
trace back the video to find time interval in which people move a cellphone to the ear or the face.
Actually many “CellToEar” events may happen outside of the scene, and thus we can stop tracing if
the person with phoning pose leaves the scene.

4 Experimental Results
Except for the “CellToEar” event, we follow the pipeline and the experimental setting of last year
[1].

4.1 Evaluation of Retrospective Event Detection
We show our primary run results using the MoSIFT and STIP features (CMU13 FV) on retrospec-
tive task in Table 1 compared with the results of CMU MoSIFT feature of the last year, CMU
Bag-of-Words of 2012 (CMU11 BoW) and the other teams’ best primary run results of 2012 (Oth-
ers12 Best). Here, both CMU13 FV and CMU11 BoW use Fisher Vector encoding. Please note that
the test video of 2012 is a subset of the last year’s. It is shown that our CMU13 FV is better than
CMU12 FV and CMU11 BoW. Except for the “CellToEar” event, the actual DCRs of the other six
events are less then 1.0.

4.2 Evaluation of Interactive Event Detection
Table 2 shows the actual DCR comparisons of 2013 retrospective result and interactive event detec-
tion results of 2012 and 2013. It can be seen from this table that the performance of five of six events
are better than the last year for the interactive event detection since we add a new feature and adopt
the late fusion strategy this year.



Table 1: The actual DCR and minimum DCR comparisons of primary runs among CMU13 FV
CMU12 FV, Others12 Best and CMU11 BoW.

CMU13 FV CMU12 FV Others12 Best CMU11 BoW
ActDCR MinDCR ActDCR MinDCR ActDCR MinDCR ActDCR MinDCR

CellToEar 1.0000 1.0000 1.0007 1.0003 1.0040 0.9814 1.0365 1.0003
Embrace 0.8357 0.8338 0.8000 0.7794 0.8247 0.8240 0.8840 0.8658
ObjectPut 0.9981 0.9975 1.0040 0.9994 0.9983 0.9983 1.0171 1.0003

PeopleMeet 0.9474 0.9450 1.0361 0.9490 0.9799 0.9777 1.0100 0.9724
PeopleSplitUp 0.8947 0.8879 0.8433 0.7882 0.9843 0.9787 1.0217 1.0003

PersonRuns 0.7708 0.7646 0.8346 0.7872 0.9702 0.9623 0.8924 0.8370
Pointing 0.9959 0.9892 1.0175 0.9921 0.9813 0.9770 1.5186 1.0001

Table 2: The actual DCR comparisons of the 2013 retrospective result, and the 2012 and 2013
interactive event detection results.

CMU13 inter CMU12 inter CMU13 retro
CellToEar 0.9057 1.0090 1.0000
Embrace 0.6540 0.6696 0.8357
ObjectPut 0.9889 1.0064 0.9981

PeopleMeet 0.8813 0.9786 0.9474
PeopleSplitUp 0.8549 0.8177 0.8947

PersonRuns 0.5850 0.6445 0.7708
Pointing 0.9851 0.9854 0.9959

For the “CellToEar” event, the actual DCR of this year improved to 0.9057 from 1.009 last year.
As shown in Fig.3, a user can quickly localize the person who is on phone by using our specific
interactive interface. Focusing on the local location, the user can trace back frames of the video
to find the occurrence duration of a “CellToEar” event by using keyboard operations. Since our
system has the function of playing video frames with different speeds, this searching process is
very fast. However, we have to spend much time in tracing persons until they disappear from the
scene, because many “CellToEar” events occur outside the scene. This can be alleviated by using
some tracking techniques in the future. Furthermore, currently we just use the HOG feature and
future work will use different low-level features and classifiers further to improve the accuracy of
the phoning pose detection.
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