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ABSTRACT 

The SESAME team submitted runs as a full participant in the MED13 evaluation, and submitted video, 
motion, and audio features; high-level semantic concepts for visual objects, scenes, persons, and actions; 
automatic speech recognition (ASR); and video optical character recognition (OCR). The individual types 
of features and concepts produced a total of eight event classifiers. We combined the event detection 
results for these classifiers using arithmetic mean and log-likelihood ratio fusion methods, and developed 
and applied a method for selecting the detection threshold. The SESAME system generated event 
recountings by selecting intervals based on the semantic concepts, and on concepts recognized by ASR 
and OCR. Our major findings are: 

 Our strategy of first selecting the most informative interval for a video, and then determining the most 
appropriate event-related semantic concepts within that interval to display for multimedia event 
recounting (MER), produced the best ObsTextScore in the evaluation. (The ObsTextScore measures 
the judges’ responses to the question “How well does the text of this observation describe the 
snippet(s)?”.) 

 The multimedia event detection (MED) performance for 100Ex and 10Ex was dominated by the 
classifiers that exploited visual content.  

 The ASR and OCR classifiers for 0Ex performed better than those trained with 10Ex.  

 The log-likelihood ratio late-fusion method demonstrated improved performance over simple 
averaging of event detection scores for 100Ex, but not for 10Ex.  

1. INTRODUCTION 

The purpose of the MED13 evaluation [1] was to characterize the performance of multimedia event 
detection systems, which aim to detect user-defined events involving people in massive, continuously 
growing video collections, such as those found on the Internet. This is an extremely challenging problem, 
because the content of the videos in these collections is completely unconstrained, and the collections 
include varying qualities of user-generated videos, which are often made with handheld cameras and have 
jerky motions and wildly varying fields of view.  

The goal of MER is to give users a human-understandable recounting for each clip that the MED system 
deems to be positive. Providing such evidence is not straightforward because humans usually think of an event 



 

in terms of specific associated semantic concepts, but the reliability of detectors for most individual semantic 
concepts is poor. The purpose of the MER evaluation was to assess the quality of recounting evidence 
associated with the MED retrieval results.  

The SESAME team submitted runs as a full participant in the MED13 evaluation. These included runs 
under three training conditions: 100 positive examples (100Ex), 10 positive examples (10Ex), and no 
positive examples (0Ex). The SESAME team also submitted results for the MER evaluation.  

Section 2 describes the SESAME MED system, Section 3 contains the results of the MED evaluation, and 
Section 4 describes the methods for MER and its evaluation. 

2. SESAME MED SYSTEM DESCRIPTION 

To handle this challenging problem, the SESAME MED system extracted a comprehensive set of 
heterogeneous low-level visual, audio, and motion features; high-level semantic concepts for visual 
objects, scenes, persons, and actions; and semantic concepts from the results of automatic speech 
recognition and video optical character recognition. Event detection scores for the individual types of 
features and concepts were generated by a total of eight event classifiers for the 100Ex and 10Ex training 
conditions. For 0Ex, the scores from four semantic-level classifiers (visual concepts, action concepts, 
ASR, and OCR) were combined. We combined the event detection results for these classifiers using 
arithmetic mean and log-likelihood ratio fusion methods, and developed and applied a method for 
selecting the detection threshold.  

2.1 Visual Content 
2.1.1 Visual Features and Concepts 

For the visual features and concepts, we relied on one event classifier based on low-level visual features 
and two event classifiers based on semantic features obtained from visual concept detector scores. Before 
we detail the event classifiers, we first detail their low-level and semantic features. 

Low-level features. We extracted low-level visual features for two frames per second from each video. 
We followed the bag-of-codes approach, which considers spatial sampling of points of interest, visual 
description of these points, and encoding of the descriptors into visual codes. For point sampling, we 
relied on dense sampling, with an interval distance of six pixels, and sampled at multiple scales. We used 
a spatial pyramid of 1x1 and 1x3 regions in our experiments. We used a mixture of SIFT, TSIFT, and 
C-SIFT descriptors [2]. We computed the descriptors around points obtained from dense sampling, and 
reduced them all to 80 dimensions with principal component analysis. We encoded the color descriptors 
with the aid of difference coding, using Fisher vectors with a Gaussian Mixture Model (GMM) codebook 
of 256 elements [3]. For efficient storage, we performed product quantization [4] on the features.  

Semantic features. We detected semantic concepts for each frame using the low-level visual features per 
frame as input representation. We followed the approach in [5]. Our pool of detectors used the human-
annotated training data from two publicly available resources: the TRECVID 2012 Semantic Indexing task 
[6] and the ImageNet Large-Scale Visual Recognition Challenge 2011 [7]. The former has annotations for 
346 semantic concepts on 400,000 key frames from web videos. The latter has annotations for 1,000 semantic 
concepts on 1,300,000 photos. The categories are quite diverse and include concepts of various types; i.e., 
objects like helicopter and harmonica, scenes like kitchen and hospital, and actions like greeting and 
swimming. Leveraging the annotated data available in these datasets, together with a linear support vector 
machine (SVM), we trained 1,346 concept detectors in total. We then applied all available concept detectors 
to the extracted frames. After we concatenated the detector outputs, a concept vector represented each frame. 



 

Three visual event classifiers. We included three visual event classifiers based on low-level and 
semantic features. To arrive at a video-level representation for the low-level visual event classifier, we relied 
on simple averaging. To handle imbalance in the number of positive versus negative training examples, we 
fixed the weights of the positive and negative classes by estimating the prior probabilities of the classes on 
training data. For classification, we used a linear kernel SVM. For the two video event classifiers based on 
semantic features, we aggregated the concept vectors per frame into a video-level representation. One 
approach used averaging and normalization, while the other approach used a new semantic encoding, which 
we will detail in the final notebook paper. On top of both concept representations per video, we used a non-
linear SVM with χ2 kernel with the same fixed weights to balance positive and negative classes. 

2.1.2 Motion Features and Concepts 

The low-level motion features were based on Dense Trajectories (DTs) [8] and MoSIFT [9]. We 
computed DT raw features with step size of 10 pixels and MoSIFT raw features with default parameters. 
The raw features were encoded using first- and second-order Fisher vector descriptors with a two-level 
spatial pyramid [10]. Descriptors were aggregated across each video. We generated four event classifiers: 
two with DT features using first- and second-order Fisher vector descriptors, and two with MoSIFT 
features using first- and second-order Fisher vector descriptors. The SVM with Gaussian kernel 
performed the classification for the MED13 task, whose parameters were selected using five-fold cross 
validation. Average fusion was chosen to combine the outputs from the same low-level feature. 

Two event classifiers were generated based on action concept detectors. There are 96 action concepts 
annotated on the MED11 Event Kit provided by Sarnoff/UCF, and 101 action concepts from UCF 101 
[11]. Sarnoff concepts contain actions that happen directly in MED videos, such as throwing, kissing, and 
animals eating. UCF 101 concepts are not directly relevant to MED videos – for example, cliff diving and 
playing violin – nonetheless, including these concepts still improves event detection scores. The action 
concept detectors were applied to small segments of videos and encoded by Hidden Markov Model Fisher 
vector descriptors [12]. The SVM with Gaussian kernel was used to train two event classifiers, one for 
each set of action concepts. 

2.2 Audio Content 
For our audio features, we extracted Mel-frequency cepstral coefficients (MFCCs) over a 10-ms window. 
MFCCs describe the spectral shape of audio. The derivatives of the MFCCs (δ MFCC) and the second 
derivatives (δδ MFCC) were also computed. The MFCC features were difference-coded with Fisher 
vectors using a 1024-element Gaussian Mixture Model. For classification, we used a linear kernel SVM.  

2.3 ASR 
We ran an English ASR model trained on conversational telephone data and adapted to conversational 
data obtained in meetings. We performed supervised acoustic model adaptation using the LDC201208 
release, and unsupervised adaptation using first-pass recognition. We also performed supervised and 
unsupervised language model adaptation to the ALADDIN domain. We used ASR to compute 
probabilistic word lattices, from which we extracted video-based one-gram word counts for MED, and 
local counts over 1-s intervals for MER. We then performed stemming to reduce the vocabulary size to 
about 40,000 words.  

For the 100Ex and 10Ex conditions, the stemmed counts were mapped to features using a log-mapping; 
for each event, those features were used to train a linear SVM with an L1 penalty. For the 0Ex condition, 
the stemmed count for each word was then multiplied by a weight obtained by a non-linear mapping of 
the event profile for that word. By summing this quantity over all the words, we obtained the MED score 
for a given video. The non-linear mapping was a sigmoid that was tuned empirically. The event profiles 



 

were obtained from the Event Kit text by using term frequency–inverse document frequency (TF-IDF) 
weightings to rank the relevance of non-stopwords. 

2.4 OCR 
SRI’s video OCR software detected and recognized text appearing in MED13 video imagery. This 
software recognizes both overlay text, such as captions that appear on broadcast news programs, and in- 
scene text on signs or vehicles [13]. The software was configured to recognize English language text.  

After text recognition, we filtered the recognized text by its confidence score, retaining only text with a 
confidence score of 90% or greater. Because each line of video text was recognized independently, 
independent detections were grouped together into a single phrase if the amount of time between the two 
pieces of recognized text was less than 30 ms.  

For the 100Ex and 10Ex conditions, for each event, we trained a log-linear classifier regularized with 
dropout over the frequency histogram of words from the preprocessed video OCR text identified in the 
training videos. In addition to the preprocessing, we removed stopwords. At event detection time, the 
event detection score was computed from the likelihood of the video being a positive instance of the 
event, given the recognized keywords. 

For the 0Ex condition, we used the same event profiles that were generated and used for ASR. The event 
detection score for each video was the cosine similarity between the word vector for the video and the 
word vector for the event profile. 

2.5 Fusion 
We applied two late fusion methods to combine the results from the various modalities: arithmetic mean 
and another method based on the log-likelihood ratio (LLR). Last year, we found that the arithmetic mean 
yielded results that were just as effective as results from more complex fusion models [14]. For arithmetic 
mean, the detection scores were normalized using a Gaussian function (i.e., computing the z score by 
removing the mean and scaling by the standard deviation). The Gaussian parameters were learned from 
the distribution of scores on a training set composed of Event Kit positives and the Event Background set.  

We also experimented with the LLR fusion approach, which uses logistic regression to linearly combine 
the detection scores from various modalities into a value that best approximates the LLR of the hypothesis 
test for “Is this video a positive instance of the specified event?”. Such a fusion approach was successfully 
applied in the past to other detection tasks, such as speaker identification [15] or spoken-term detection 
[16]. The LLR fusion approach computes different fusion weights for each modality and for each event. 
The training data for the fusion weights were the detection scores for each modality obtained by running 
ten-fold cross-validation with the Event Kit positives and the Event Background set. This procedure 
provided an unbiased detection score for each trial in the 10Ex and 100Ex conditions by training on 90% 
of the positives and negatives. For each trial, we created a feature vector by concatenating the scores of all 
of the N modalities. We included N indicator variables to account for the possibility of missing scores for 
some trials.  

We then used logistic regression to train Fusion models. If the weight of a modality was found to be 
negative, the linear regression was recomputed with that modality removed. Since most modalities’ 
detection scores were initially in [0,1], we mapped those to [-inf,+inf] using a logit mapping before fusion 
training. Since the mean average precision metric in the MED evaluation emphasizes the importance of 
correctly scoring the high-scoring detections, we found it beneficial to consider a modality’s score to be 
missing if it fell below a threshold set to .002 in the posterior domain.  



 

2.6 Thresholding 
For the 100Ex and 10Ex conditions, we selected a detection threshold for each event using a set of 
approximately 4000 event trials with known truth data subsampled from the Research set and the Event 
Kits. We chose the threshold with the highest corresponding minimal acceptable recall metric, R0, to be 
the optimal threshold.  

When applying these thresholds to MEDTEST, we found that a single threshold for all events yielded 
slightly better R0 values on average than event-specific thresholds. We believe that this was due to the 
small number of event positives (~20 – 40 per event for the 100Ex condition) in the training sets. In the 
future, we plan to use the full set of event positives in a cross-validation process to find event-specific 
thresholds that maximize R0. 

For the 0Ex condition, we estimated the thresholds based on the optimal thresholds for Events E001 
through E005, which were part of the Research data set. 

3. MED PERFORMANCE EVALUATION 

Performance of the SESAME 
system was assessed on the 
PROGTEST and MEDTEST data 
sets. Tables 1 and 2 show MED 
performance (in terms of mean 
average precision) on the 
PROGTEST data set with the 
100Ex, 10Ex, and 0Ex training 
conditions, and for five system 
configurations: ASR only, non-
ASR audio, OCR only, non-OCR 
visual (which consisted of the 
visual features and concepts, and 
motion features and action 
concepts), and the full system (i.e., 
with all subsystems). Because the 
SESAME system does not 
currently include non-ASR audio concepts, there are no results for the AudioSys component for the 0Ex 
condition. Table 1 shows performance for pre-specified events, and Table 2 shows performance for 
ad hoc events. 

Compared with the SESAME system description in Section 2, the SESAME system evaluated on the 
PROGTEST data set by NIST had two differences: 

 A bug in the 100Ex and 10Ex event training for video OCR resulted in useless video OCR event 
detection scores.  

 Instead of LLR fusion, the evaluated system used arithmetic mean fusion, because the results using 
the LLR method were not ready by the submission due date. 

Tables 1 and 2 show that the MED performance for 100Ex and 10Ex was dominated by the classifiers that 
exploited visual content. In addition, the arithmetic mean fusion approach was not very effective: the 
performance of the full system was only slightly better than that of the visual system for 100Ex, and the 

Table 1:  MED performance (mean average precision) on the 
PROGTEST data set for pre-specified events 

 

Table 2:  MED performance (mean average precision) on the 
PROGTEST data set for ad hoc events 



 

performance of the full system was below that of the visual system for 10Ex. We believe that this was due 
to the noisy video OCR event detection scores.  

The ASR classifier for 0Ex performed better than the one for 10Ex. We believe that this was due to the 
limited amount of training data available for 10Ex, and that building event detectors based on the Event 
Kit text resulted in better detection. 

Table 3 shows the MED performance of the SESAME system after the event-training bug was fixed, and 
with LLR fusion on the MEDTEST data with the 100Ex, 10Ex, and 0Ex training conditions. The tables 
show the average precision of the event classifiers for the individual types of data and their fusion. The 
OCR event detection results for 0Ex performed better than those for 10Ex and 100Ex (not shown), so the 
0Ex results were used in all of the fusion experiments on MEDTEST.  

For 100Ex, the LLR fusion method performed slightly better than arithmetic mean. For 10Ex, the results 
from the visual and motion modalities were combined to limit the number of parameters in the LLR 
model. Still, LLR did not perform as well as arithmetic mean.  

Table 3:  MED performance on the MEDTEST data set 

 

4. MULTIMEDIA EVENT RECOUNTING (MER)  

Recounting consists of a concise textual summary of each piece of evidence and the source of the 
evidence: visible text (via OCR), video (not involving OCR), speech (transcribed via ASR), and/or non-
speech audio (sounds not involving ASR textual transcription). For each piece of evidence, recounting 
also includes a confidence score; an importance score, indicating the important of the evidence in 
detecting the event; and spatial and temporal locations in the video where the evidence occurs. 

4.1 MER Methods 
The SESAME system generated event recountings for the 100Ex condition based on semantic concepts 
from the following multimedia sources: ASR, video OCR, and the 1551 automatically detected visual 
objects, scenes, persons, and actions. MER observations were selected from each source independently. 

For the ASR and OCR MER data, the importance scores for individual text concepts were computed as a 
function of the weights of the text concepts in the MED classifiers. Up to four ASR results with 
importance scores above an event-specific, manually determined threshold were included in the MER 
results. For OCR, the text concepts with the top four importance scores were selected as candidates, and 
then filtered with an event-specific keyword list. 

For the visual and action concepts, the video was divided into small segments, and concept detection 
scores were computed on each segment as part of the computation for MED. MER importance scores 
were computed for each segment in the video, based on an SVM classifier that was trained on the Event 
Kit and Event Background data sets. The segments with the four highest importance scores were selected 
for MER. The semantic concepts that contributed most to the importance score were selected as the MER 
observations for that segment.  



 

4.2 MER Evaluation 
The purpose of MER is to help users accurately and rapidly assess whether each clip is truly a positive for 
the specified event. In the MER evaluation, the MER results were manually reviewed by NIST judges and 
were evaluated according to three measures: 

 Accuracy: the degree to which the judges’ assessments agreed with the MED ground truth 

 Precision of the observation text: how well the text of the observations described the snippets 

 Percent Recounting Review Time:: the percentage of clip time the judges took to perform the 
assessment 

The SESAME MER results achieved an accuracy score of 64.1%, a precision score of 2.53 (out of a 
possible 4.0), and a Percent Recounting Review Time score of 41.83%. 

Figure 1 shows a relatively successful example of MER produced by the SESAME system.  

 

Figure 1. Successful example of MER for the event Making a Sandwich. 

Although many of the visual concepts cited in the MER observations were not present in the video 
snippet, merely choosing the most relevant interval for viewing is often very helpful to the user. An 
informal manual examination of 250 video snippets generated from visual evidence indicated that 
approximately 75% contained enough content for a user to determine whether the video was an instance 
of the event. Therefore, the strategy of first selecting the best interval, and then determining the best 
semantic concepts within the interval to display for MER, seems to be worthwhile for visual and action 
concepts.  
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