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Abstract 

In Multimedia Event Detection 2013 evaluation, SRI Aurora team participated in EK100, EK10, and 

EK0 tasks with full system evaluation. We submitted 15 runs for both pre-specified events (PS-Events) 

and ad-hoc events (AH-Events). The majority of them achieved satisfactory results. In particular, thanks 

to the well-designed concept features, our EK10 system works consistently much better for both PS-

Events and AH-Events. By creating the concept language model from the web source, we build our EK0 

system to perform event detection without training examples. This system achieved promising results on 

PS-Events. In MER task, we developed an approach to provide a breakdown of the evidences of why the 

MED decision has been made by exploring the SVM-based event detector. Furthermore, we designed ev-

idence specific verification and detection to reduce uncertainty and improve key evidence discovery.      

1 Introduction 

In TRECVID 2013[20], Multimedia Event Detection (MED) aims at detecting complex events, such 

as “birthday party”, “wedding ceremony”, “parkour” and so on. One of the common characteristic of 

these events is that the event videos usually cover a great diversity of visual contents including various 

objects, atomic human actions, physical scene, and audio information. To capture all aspects of an event, 

we develop various low-level static and dynamic visual features and audio features. Given sufficient 

training examples, such as the EK100 systems which provide 100 positive examples from each event for 

training, the event models built on low-level features preform reasonably well. In Section 2, we brief all 

the low-level features and their variations employed in our Aurora system. When the number of positive 

training examples decreases, however, the low-level features based event models get less generalization 

[7]. To make up this shortage, we also introduce a large number of concepts from which various high-

level features are developed. It has been verified that high-level concept features bear better generaliza-

tion capability, especially when the number of training examples is small [7]. In Section 3, we focus on 

describing the concepts used in Aurora system. To relieve the human manual labor in concept annotation, 

we introduce a semi-automatic annotation strategy by which we are capable of dramatically increasing the 

number of concepts. In addition, various high-level concept features have been developed in Aurora sys-

tem. The evaluation results demonstrate that our EK10 systems work relatively better due to the well-

designed concept features. In Section 4, we describe the process to build our EK0 system using concept 

features. Our EK0 system performs MED without event training examples. Multimedia Event Recounting 



(MER) enables the disclosure of the evidences which result in the MED decision in AURORA system. 

This procedure is introduced in Section 5. Finally, in section 7, we discuss briefly the geometric and 

greedy fusion strategy adopted in our system, and then go through the MED13 and MER13 evaluation 

results.  

2 Low-Level Visual and Audio Features  

We developed a variety of low-level features to capture various aspects of an event, such as scene, object, 

action, and so on. There features are extracted either from sample frames (static features), or spatio-

temporal windows of frames (i.e., XYT-volumes, dynamic features) of a video. All low-level features are 

quantized into visual-words/audio-words, which are used to model an event as a Bag of Words (BOW). 

We treat this BOW as an average feature pooling over the whole frame. However, a specific event typi-

cally has its own Region of Interests that produce most informative evidence of this event. Hence, we also 

employ a new strategy for spatial pooling of the low-level features, which result in an event model captur-

ing spatial information.  

2.1 Static Visual Features 

Static features are computed from sampled frames (i.e., one sample every second). They are assumed to 

provide object or scene appearance information of an event. Following static features are extracted: 

A. SIFT [2]: SIFT feature is a widely used feature descriptor for image matching and classification. The 

128 dimensional SIFT descriptor is rotation invariant, which captures the local texture structure of an im-

age. We extracted two types of SIFT features: sparse SIFT (S-SIFT) and dense SIFT (D-SIFT). S-SIFT is 

computed around an interest point detected by corner detector, and D-SIFT is computed for dense sam-

pled image patches. The former one is used to describe informative patches of an object, while the latter is 

good to capture local patch distribution over a scene.    

B. colorSIFT [3] : This feature is an extension of SIFT. Instead of computing SIFT based on intensity 

gradient, colorSIFT detects interest points and create descriptors on color gradients. It actually contains 3 

128 dimensional vector with first one from intensity gradient and the other two from color gradient. As a 

result, it is able to capture both intensity and color information. 

C. Transformed Color Histogram [4]: It is a normalized color histogram as describe in [4]. 

2.2 Dynamic Motion Features 

Dynamic features are computed from detected XYT-volumes of a video. These XYT-volumes are sam-

pled by detecting spatio-temporal interesting points or 2D corner point trajectories. They are supposed to 

capture the motion information of a video. But with the design of various descriptors, they are able to cap-

ture the appearance information too. The following dynamic features have been extracted. 

A. STIP [5]: The Space-Time Interest Points (STIP) detects 3D interest points in the spatio-temporal do-

main, which is the extension of 2D Harris corner detector. It assumes the detected points have the most 

intensive motions in a video. STIP generate a descriptor on the intensity gradient of frames (HOG) and on 

the optical flow space (HOF). The final descriptor encodes both HOG and HOF feature description.  

B. Dense Trajectory Feature (DTF) [6]:   Rather than detecting interest point in XYT space, DTF de-

tects 2D corner points and tracks them in a short time period. The 2D corners are usually associated with 

objects in a video. By analyzing the velocity or shape of trajectories, we are able to select trajectories with 

strong enough motions to represent the characteristics of a video.  The corners are tracked by KLT track-



ing. From these trajectories, various features/descriptors can be extracted, such as shape, velocity. The 

AURORA adopts two types of descriptors:  HOG (histogram of orientated gradient) and MBH (Motion 

Boundary Histogram). HOG captures the static appearance information along the trajectory, while MBH 

captures the motion information along the trajectory.   

C. MoSIFT [11]: Motion SIFT (MoSIFT) extends the 2D SIFT descriptor to the temporal dimension. 

Unlike SIFT, it combines both local appearance and motion information to detect interest points. The mo-

tion information is obtained by computing optical flow.   

2.3 Audio Features 

A. MFCC Feature: The audio is PCM-formatted with a sample rate of 16kHz. The extracted acoustic 

features, using HTK[1], are the typical Mel-Frequency Cepstral Coefficients (MFCCs) C0-C19, with del-

ta and double deltas, for a total of 60 dimensions. Each feature frame is computing using a 25 ms window, 

with 10 ms frame shifts. Short-time Gaussian feature warping using a three-second window is used, and 

temporal regions containing identical frames are removed.  

B. CMU Audio Features: We also adopt another two types of AUD feature (UC, Bauds), as described in 

[13] and [14]. 

2.4 Spatial Pooling over Low-Level Visual Features  

This success of Bag of Features is due to the fact that the statistics information of the bag of local features 

in terms of histogram of visual-words captures the major cues of events to some extent. However, one 

obvious disadvantage of BoF is that it ignores the spatial or temporal distribution of the features, which 

might be discriminative for some events. For example, the motion features usually concentrate on the cen-

tral regions of a video for “sewing project”, while “flash a mop” produces motion from the entire frame. 

Therefore, we employ the Fixed-Pattern Based Spatial Pooling: the basic idea is similar to Spatial Pyra-

mid Match, which constructs a pyramid structure for two images, and the matches happening to the fine 

level will contribute more to the final match score. Instead of having a strict pyramid structure, we pre-

define 12 Region of Interests (ROI) including the full frame to pool features. The event training strategy 

for the pooling features is different to SPM. Please refer to [15] for more details.  

3 High-Level Concept Features  

One of the challenges for event recognition is to bridge the semantic gap between low-level features and 

high-level events. Concepts are directly connected to the Event Kit Descriptions. Thanks to the semantic 

meaning of concepts, the concept-based event representation (CBER) [7] potentially has better generali-

zation capability, which is significantly important for event recognition, especially when only a few train-

ing examples are available (EK10 task) or even without any training examples (EK0 task). In addition, 

CBER offers a natural schema for multimedia event recounting. In Aurora system, we develop three types 

of concepts: visual concepts, audio concepts, and ASR/OCR text.  

3.1 Visual Concepts   

As we see, an event usually contains various objects, scenes and atomic human actions. To precisely de-

scribe the event, we need define the corresponding concepts. Our visual concepts include object, scene 

and action concepts. The former two are usually defined over a still image, while the latter is defined over 

a spatial-temporal video volume.  

 



A. Action Concepts:  

Actions are typically atomic and localized motion and appearance patterns, which are strongly associated 

with some specific event. Our action concepts cover general actions such as “person walking”, “person 

running”, “person climbing”, as well as event specific actions such as “standing on top of bike”, and 

“running next to a dog”. Other than the 185 action concepts developed in MED12, we further collected 

about 110 concepts and annotated on consumer videos by human annotators. The new concepts are most 

likely not relevant to the PS-events when we define them.  

However, the human manual annotation is very laborious. To release annotators from the time-consuming 

job, we have been exploring a novel strategy to achieve semi-automatic concept annotation (SAA).  A 

regular process of concept annotation over consumer videos starts with downloading relevant videos of 

one concept using search queries and then annotators start to annotate the starting and ending period as 

the positive clips. During this procedure, we noticed that, given a specific well-defined concept, the major 

parts of the majority of the collected videos are relevant. Having this observation, we developed the SAA 

system to automatically select relevant video clips for a given concept using PageRank technique. The 

assumption of our approach is that the majority of the videos are relevant to the concept. A result example 

of the semi-automatic concept annotation is shown in figure 1 for the concept “Blowing off candles”.  

From the snapshot, we can tell about more than 95% video clips are correctly annotated as “blowing off 

candles”.   

Figure 1: The automatically selected video clips for concept "Blowing off candles" 



In addition to the self-defined action concepts (i.e., both manual annotated concepts and SAA concepts), 

we also employ the third-party action concepts such as UCF101 and HMDB 51 dataset, which define a lot 

of sport actions and daily life actions.  

We employ well-established techniques to build our concept detectors. In particular dynamic features (i.e., 

STIP [5] and Dense Trajectory Based features [6]), and the bag-of-word representations [12] defined over 

codebooks of these features are used to represent action concepts. Binary SVM classifiers with Histogram 

Intersection kernel are used for concept classification.  

B. Object and Scene Concepts:  

The object and scene concepts are covered by TRECVID SIN concepts and UMass Pseudo annotations. 

TRECVID SIN task defines about 500 concepts which include objects such as TV screen, car, building, 

and scenes such as mountain, beach, street, office, and so on. Other than the use of CMU SIN 12 features, 

we also developed our own SIN concept features based DenseSIFT and STIP low-level features. Please 

refer to our SIN task report for the details [16]. 

Pseudo-annotation takes the advantage of object-based concepts while annotating each video frame indi-

vidually. It is a semantically richer representation, because it is constructed on top of the densely sample 

SIFT features (i.e. low-level features). In pseudo annotation, the idea is to annotate video frames with k 

highest responsive object concepts among a pool of them. The distribution of highly responsive concepts 

enables us to rank videos for a given query. Here highly responsive concepts means that a number of con-

cepts where they have the highest probability for a given video. 

3.2 Audio Concepts   

The audio concepts are either taken from CMU or annotated by our team. The Neural Network -based 

audio concept classification system employs the Parallel Neural Network Trainer TNet [17] technology 

from Brno University. It has a basic architecture which consists of two hidden layers with 1,000 neurons 

each and sigmoid activation functions. For the training phase a stochastic gradient descent optimizing 

cross-entropy loss function was used. The learning rate was updated using the “newbob” algorithm: It's 

kept fixed at LR=0.002 as long as the single epoch increment in cross-validation frames accuracy is high-

er than 0.5%. For the subsequent epochs, the learning rate is being halved until the cross-validation in-

crement of the accuracy is inferior to the stopping threshold 0.1%. The NN weights and biases are ran-

domly initialized and updates were performed per blocks of 1024 frames.  Short-time Gaussian feature 

warping using a three-second window is used, and temporal regions containing identical frames are re-

moved. 

3.3 ASR/OCR Text Information  

We adopted an information retrieval based approach retrieve the videos based on OCR/ASR. The event 

kit is used to automatically construct the query. All fields in the event kit are used for ASR query while 

the audio field is dropped in the OCR query. An index is created for ONR/ASR outputs of video clips 

using the Galago engine. A sequential dependence model is used for retrieval both OCR and ASR.  The 

model takes both ordered and unordered phrases into account. Terms are weighted based on event kit 

fields. The weighting is set manually. In order to fuse OCR/ASR results with low-level and high level 

features, an expected-precision is computed. Since many videos do not have OCR/ASR data, a video-

level fusion is carried out; where a low OCR/ASR retrieval score does not affect the feature based retriev-

al score, while a very high OCR/ASR retrieval score significantly increases the final score. 



3.4 Concept Based Event Representation (CBER)   

Given a video x, a concept detector    can return a confidence value   . In practice, however, it is not 

wise to feed a long length video into a detector and get a single detection confidence for the entire video, 

because concept detectors are trained on single frames or short video segments. Our method uses the 

atomic concept detectors as filters that are applied to a given XYT segment of a video clip to capture the 

similarity of content to the given concept. So as a first step towards representing a video clip with con-

cepts, each concept detector is applied to each XYT window in a video to obtain an K*W matrix C of 

scores, where      (  |  )  Each     is the detection confidence of concept   applied to window  . 

Given the raw detection scores of concepts over the full video, the event depicted in the clip can be repre-

sented using a number of features derived from    . One option is to select the maximum detection score 

  
    over all sliding windows as the detection confidence of concept detector   . As a result, we are able 

to obtain a K-dimensional vector      to represent a video. Meanwhile, we have embedded a video into 

the concept space defined above. What is more, based on the K-dimensional semantic space, we also ex-

plore the following four representations: 

MAX pooling: for each concept detector, only the maximum detecting score over all sliding windows is 

pooled to show the probability of concept given a video. 

Max-Avg-Std (MAS): Other than the maximum detecting score, we believe other information of the con-

cept distribution over a video, such as average and standard deviation, is also discriminative for an event. 

Hence, for each concept detector, the maximum, average, and standard deviation values over all sliding 

windows are selected to form MAS feature.  

Bag of Concepts (BOC): Akin to the bag of words descriptors used for visual word like features, a bag of 

concepts features measures the frequency of occurrence of each concept over the whole video clip. To 

compute this histogram feature, the SVM output is binarized to represent the presence or absence of each 

concept in each window. 

Co-occurrence Matrix (CoMat): A histogram of pairwise co-occurrences can be used to represent the 

pairwise presence of concepts.  

Max Outer Product (MaxCoMat): Since concepts represent semantic content in a video, the max value 

of each concept across the whole video represents the confidence in the presence of a concept in a video. 

The outer product of the vector of max values of each of the concepts represents both the strength of the 

presence of each concept (diagonal values) as well as the strength of co-occurrence of pairwise concepts 

(off-diagonal values).     

4 Zero-shot Learning for EK0 Task 

EK0 task is to conduct event detection without any training examples. The only information available is 

the event kit which provides the description of the target events. We developed a system which leverages 

the open knowledge source such as Wikipedia to bridge the gap between the event kit and the CBER 

models and available OCR/ASR text. As a result, our system is able to achieve good performance using 

the sequential dependence model [18] given only OCR/ASR information and concept detection results. 

This model assumes dependencies between neighboring words without modifying order and achieves 

substantial gains in common text collections. In this section, we briefly describe the major steps to build 

our system.  



4.1 Expanding Textual Descriptions 

Since the event kit is the only input in the EK0 task, the specific text used is the key to our performance, 

one of our focuses is to improve the textual descriptions of the events. We replaced the name of the event 

with a short query. Then, we automatically removed common phrases based upon the Lemur 418 English-

word stop-list. Using the name and short description fields, we ran these queries against Wikipedia, add-

ing a field of pseudo-relevance feedback terms. 

4.2 Concept Language Model and Selecting Concepts  

One challenge for EK0 task is to determine which model to be used for a particular query, i.e., the target 

event. The query will contain only textual features, so we need a process to select image and video fea-

tures. Given a query like “Birthday Party”, it is useful to know that the detector focused on “blowing out 

candles on a cake” is more relevant than “person raking leaves,” given the textual description of this event.  

To select good detectors, we took an information retrieval approach, and considered that we want to re-

trieve, or rank all the detectors given a query. To achieve this ranking, we built up language models or 

documents for each concept through searching the web corpus. The top results from these searches were 

used as the language model for that particular action concept or video feature.  

4.3 Event Query and Fusion Methodology  

Having the concept language models, we are able to select the top few relevant concepts for an event que-

ry. For each methodology which is used to create the concept language model, we keep the concepts in 

separate partitions. Using these “concept types” separately allow us to learn the liability of each concept 

set with respect to our training data and the task. With the selected concepts in each partition, we are able 

to rank all the videos with respect to the matching concepts, and produce a handful of concept ranked lists. 

      Given the results returned by different partitions, we need to fuse them, as well as the returns by OCR 

and ASR source. As Galago is used for all our searching needs, the returned scores are rank-safe approx-

imations of log probabilities, which are further normalized by Max/Min approach. Given the multiple 

ranked lists, our system extracts summary and per-list features. The summary features include the number 

of matches above a given rank as well as the sum of reciprocal ranks and the sum of reciprocal scores. 

Each list also includes reciprocal rank and score features. A linear model of these features is trained using 

the top 3000 results from each list using the RankLib package [19], and then RankLib is used to generate 

our final ranked list for test and evaluation purposes. 

5 Multimedia Event Recounting 

       Event recounting is to describe the spatial and temporal details of why the event detection decision 

has been made. Multimedia event is typically a complex activity occurring at a specific place and time. 

On the other hand, a video may contain a lot of other irrelevant information as well.  The recounting cap-

tures key observations regarding the scene, people, objects, and activities pertaining to the event occur-

rence. Such recounting provides user a semantic description that is useful to perform further analyses. As 

the concept features that we are using by definition contain semantic information, we can directly use the 

concept features to perform recounting.  

        As our event classification is based on Support Vector Machines (SVMs), we present an approach to 

perform the recounting in the context of SVMs. Given the feature vector x      where n is the feature 

dimension, the SVM decision function   x  can be represented as follows, 

  x  ∑     x  x  
 
         , 



Figure 2. Plot of mAP changes with greedy added features during the 

fusion process of three folds created for AH-Events evaluation. Each 

curve corresponds to one fold. 

where x  is one of m support vectors, ie.        .   x x   is the kernel value between x and  x .     is 

the signed weight of x  and b is the bias. If the kernel functions have the following form,   x     

∑         
 
   , where f is the function and    and    are the ith feature value of x and z. For example, inter-

section kernel satisfies such a form 

where               . Linear ker-

nel also follows this form. Now the 

decision function can be rewritten as 

follows, 

     ∑ ∑          
   

   
 
     , 

where   
 is the ith feature value of lth 

support vector. Supporse    x  

∑          
   

   , we can decompose 

the decision value of   x  as 

  x  ∑    x 
 
     , 

where    x  encodes how encodes 

how much ith feature contributes 

towards the final decision value. For 

our event recounting application, as each feature has semantic information, we are able to retrieve the im-

portant evidences by sorting    x . We have shown our recounting approach in the context of SVM clas-

sifiers. In fact, the approach can be applied to any additive classifiers as in Eq 1, which covers a wide 

spectrum of classification approaches. 

6 Experiments 

6.1 Training/Testing Methodology 

We adopt the Support Vector Machine (SVM) as our basic classifiers and use intersection kernel for all 

histogram-based features and RBF (Radial Basis Function) kernel for concept-based features. Other SVM 

parameters are default values. We apply L1 normalization to histogram-based features. Event videos are 

used as positive samples and all non-event videos are used as negative samples to train a binary classifier 

for each event independently. Each classifier outputs a probability of detection as a score. LibSVM [10] is 

used as the SVM solver.  

Standard Training/Testing Evaluation Folds: We follow the MED13 evaluation plan, and use the exact 

positive and negative videos specified in the evaluation package to training our event models. All training 

process adopts the same 5K background videos as the negatives.  

6.2 Fusion Approach 

Our basic fusion strategy is geometric mean based fusion. Our system produces several dozens of low-

level and high-level features, but not all of them are reasonable work well. For the PS-Events, we use al-

most all features which perform reasonably well on the MEDTest dataset. For AH-Events, to select a sub-

set of classifiers, we optimize the mean average precision (mAP) across all events. The idea is to search 

for classifiers which capture complementary characteristics of the data and hence give an optimal mAP. 

Our algorithm is based on recursively searching for the next best classifier. We start with one feature clas-

sifier (which individually provides maximum mAP) and greedily combine a new feature classifier that 

maximizes the average mAP score across all events. This process generates a classifier path. As we can 

see from Figure 2, which plots the mAP increments for three folds of EK100 evaluation for AH-Events, 



Table 3. Multimedia Event Recouting (MER 13) evaluation results.  

Accuracy ObsTextScore PRRT

73.26% 158.00% 148.95%

Table 2. MED 13 evaluation results for both PS-Events and AH-Events in term of mean Average Precision.  

FullSys ASRSys AudioSys OCRSys VisualSys

EK100 24.70% 3.00% 0.80% 3.70% 22.50%

EK10 13.70% 3.00% 0.90% 3.70% 12.40%

EK0 7.00% 3.00% 0.20% 3.70% 6.50%

EK100 24.20% 3.90% 9.60% 4.30% 20.40%

EK10 14.40% 3.90% 5.40% 4.30% 10.20%

EK0 1.40% 3.90% 0.20% 4.30% 0.60%

PS-EVENTS

AH-EVENTS

mAP

we observe that, the mAP first increases for 6-10 features, then plateaus out and then decreases as more 

irrelevant features are added to the ensemble. We use the plateau as a threshold to threshold the feature 

paths, and then use the union of feature paths across all folds as our classifier ensemble. Finally, the clas-

sifiers in the ensemble are fused using geometric mean, which is equal to the nth root of the product of the 

scores, where n is equal to the number of classifiers. 

In the greedy fusion process, we observed that most good features are selected. In particular, comparing 

the selected feature list of EK100 and EK10, we found that EK10 fusion selects more concept features 

generated from various concept datasets. This scenario validate our conjecture that high-level concept 

features enable better recognition when fewer training examples available. 

6.3 MED13 Results and Discussion 

All the computations reported in this notebook were performed on the SRI-Sarnoff AURORA system. 

This system comprises of a number of servers with web interfaces for managing experiments run over a 

distributed computational pipeline, annotating training data and just browsing the datasets. The computa-

tional pipeline currently consists of about 350 AMD Opteron nodes with 5GB RAM per node as well as a 

number of nVidia Tesla M2050 GPUs and is based on HTConder which is designed for handling the de-

pendency between different tasks.    

In MED13 [20], we submitted 5 runs (i.e., Full System, ASR System, Audio System, OCR System, and 

Visual System) for each of the three training modes ( i.e., EK100, EK10 and EK0) for both PS-Events 

and AH-Events. The mean Average Precision (mAP) of each run is listed in Table 2. As comparing to 

other teams, most of our runs achieved satisfactory results. Relatively speaking, our EK10 system works 

particularly better for both PS-Events and AH-Events. 

Our MER system obtains 73.26% accuracy. More details for MER shown in Table 3. As comparing to 

other runs in MER13, we did very well. This is due to our MER system is built on the Concept Based 

Event Representation [7].  
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