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ABSTRACT

We proposed an approach based on a local part model
(LPM) and a random sampling strategy for detecting seven
types of events defined in TRECVID Surveillance Event De-
tection task, such as CellToEar, Embrace, ObjectPut, People-
Meet, PersonRun, and Pointing. To extract spatio-temporal
points, a very dense spatio-temporal grid is simply used for
random sampling. At the locations of the points, LPM is
employed to compute features that capture both the global
and local motion information in the spatio-temporal cuboids.
In a bag-of-features representation of human activities, a set
of visual words are produced from the obtained LPM-based
features, and the events contained in videos are represented
as histograms of visual word occurrences. For each type
of events, a discriminative support vector machine classifier
using RBF-x? kernel is trained. For purpose of event detec-
tion in long surveillance videos, spatio-temporal volumes are
slid in temporal direction to find candidates containing likely
events, and the final decision is made by SVM response
thresholding and local-maximum filtering. In addition, an
event viewer tool has been developed for manually and effi-
ciently remove false positives in the results.

Index Terms— Event detection, local part model, random
sampling, bag-of-features, event viewer.

1. INTRODUCTION

As aresult of low cost of cameras and communication devices
and growing demand for security, computer vision techniques
have started to play an important role in visual surveillance.
It is now becoming possible to develop intelligent systems to
automatically identify specific events in massive surveillance
videos. Many works with great progress have been done in
this field [1] [2] [3]. However, human behavior recognition
is still a challenging problem. It is far beyond for machine to
reach human capabilities in analyzing video content [4].

In the TRECVID surveillance event detection (SED)
task [5], there are seven types of human activities includ-

Fig. 1. Human activities captured by four different surveil-
lance cameras.

ing CellToEar, Embrace, ObjectPut, PeopleMeet, People-
SplitUp, PersonRuns, and Pointing. The training and test
videos were taken by five surveillance cameras installed in
London Gatwick Airport. As shown in Fig.1, this task is
challenging because of viewpoint variations, clutter, high
density crowd, occlusion, and so on. To analyze video con-
tent, spatio-temporal methods achieved good results. These
methods can be divided into two categories: global and lo-
cal representation-based methods extracting spatio-temporal
features from 3D volumes in spatio-temporal dimension. The
former represents the entire spatio-temporal volume or the
volume of interest by a single descriptor, and applies it to
simple activity recognition [6] [7]. By incorporating bag-
of-features representation, the latter achieved better results
especially for more complex human activities [8] [9] [10]
[11] [12]. Specifically, local representation-based methods
usually first detect spatio-temporal interest points, and then
extract local features. For example, the MoSIFT feature
[13] is a 3D extention of SIFT [14], which captures sub-
stantial motion in local spatio-temporal volume. In [15], the
MOoFREAK detector is proposed that represents events using
fast-to-compute binary spatio-temporal descriptors. To im-



prove computation efficiency, Willems et al. [16] developed a
Hessain 3D detector and an extended SURF descriptor [17].
Furthermore, sampling strategies have been successfully ap-
plied to bag-of-features based image classification [18], and
the recent works [19] [3] [11] have reported that direct dense
sampling of spatio-temporal points produces good results for
action recognition. A bag-of-words approach is used [20]
to match local features to a set of visual words such that
the video can be represented as a histogram of visual word
occurrences. The spatio-temporal relationships among the
local features are however occluded by the histogramming
performed in this kind of approaches.

In this work, we employ a local part model (LPM) [21]
to capture both global and local motion information. Specifi-
cally, we sample spatio-temporal points on a very dense grid
instead of extracting spatio-temporal interest points, which is
of benefit to computation efficiency. At each point location,
the LPM-based feature is computed from the corresponding
local spatio-temporal cuboid. A LPM-based feature is com-
posed of a root descriptor and eight part descriptors to capture
global and local motion information in the cuboid respec-
tively. Finally, the bag-of-feature representation is fed to a
pre-trained support vector machines (SVM) [22] for classifi-
cation. The flowchart of the proposed approach is shown in
Fig.2. Furthermore, we developed an event viewer tool which
allows users to manually flag the result of our event detection
approach.

The remainder of this paper proceeds as follows. In Sec-
tion II, we present the details of our approach for event detec-
tion, especially the LPM-based feature and the random sam-
pling strategy for bag-of-feature representation. In Section
III, we introduce an event viewer tool for manually remov-
ing false positives in the results returned by our event detec-
tion approach. The result of our approach performed on the
TRECVID SED task is given in Section IV, and we conclude
this paper in Section V.

2. PROPOSED APPROACH FOR EVENT
DETECTION

In this section, we introduce the proposed approach for event
detection, especially the local part model for feature extrac-
tion and the random sampling strategy for bag-of-features
representation.

2.1. Motion Boundary Histogram

To use motion for event detection, we employ motion bound-
ary histogram (MBH) [23], a flow based-feature for coding
motion boundaries or displacements of moving objects, which
has been applied to action recognition with good performance
[3]. Similar to the histogram of oriented gradient [24], the
optical flow field is separated into its horizontal and verti-
cal components. Spatial derivatives are calculated for each
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Fig. 3. An example illustrating the local part model.

component. The gradient magnitudes and orientations are
used as weighted votes into orientation histogram. As a re-
sult, each component is associated with a histogram. The two
histograms are combined as the final descriptor. The MBH
descriptor represents the gradient of optical flow, and con-
stant motion information is ignored, which is of benefit to
suppressing noise resulting from background motion.

2.2. Local Part Model

Inspired by the deformable part model [25] for object de-
tection, a local part model [21] has been developed to cap-
ture the motion in a local spatio-temporal cuboid. The LPM-
based feature is computed by a root filter that covers the en-
tire cuboid and a set of higher resolution part filters that cover
smaller sub-cuboids. The sub-cuboids with fixed size and lo-
cation are defined on a grid that has twice the spatial resolu-
tion of the root. The part filters thus capture the fine-grained
information. The MBH descriptor is used as both the root
and part filters to capture global and local motion informa-
tion respectively. Fig.3 illustrates the local part model. To
implement fast computation of LPM-based feature, two inte-
gral videos are computed, one for the root filter and the other
for the part filters at twice spatial resolution. In our experi-
ments, one root filter and eight parts filter are used in the lo-
cal part model, and the corresponding descriptors are concate-
nated into one vector, which is then nine times of the original
MBH descriptor.

2.3. Random Sampling and Bag-of-Features

Random sampling has been applied to real-time action recog-
nition and leads to excellent performances [21]. Given a
video, a very dense spatio-temporal grid is used for feature
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Fig. 2. The flowchart of the proposed approach for event detection.

pooling. Each spatio-temporal point is associated with a local
3D cuboid. In our experiments, multiple scale cuboid are
used and the consecutive scales are generated by scale factor
of 2. To obtain high density sampling, the intersection be-
tween two neighboring cuboids is set at 80%. For example,
there are total of 87,249 spatio-temporal points generated for
a video with resolution of 182x120 and 95 frames. For the
selected 3D points, the LPM-based features are computed for
the corresponding cuboids.

A standard bag-of-feature approach [20] is used to rep-
resent events contained in videos. We use the k-means clus-
tering algorithm [26] to group a subset of randomly selected
LPM-based features, and construct a dictionary of visual
words. We fix the number of visual words in the experiment.
For a video clip, the obtained LPM-based features are as-
signed to their nearest visual words using Euclidean distance,
and the obtained histogram of visual word occurrences is
used for event recognition. High dimensional feature gener-
ally lead to higher accuracy. To achieve a trade-off between
accuracy and matching efficiency, principal component anal-
ysis (PCA) [27] is used for dimension reduction. In our case,
the root filter and part filters highly overlap, and PCA is
helpful for removing redundant information.

2.4. Detection

For the purpose of event detection, we train non-linear SVMs
with RBF-x? kernel [28] given as follows

K(Xa y) = exp(_D(Xa y))?
2 (1)

Since our object is to detect seven types of events in surveil-
lance videos, we train seven models using LIBSVM [29] by
using one-versus-rest approach. The videos in the Gatwick
dataset are used for training model. For each query video
clip, a bag-of-features representation is build according to the
method described in the above sub-sections, and fed into the
pre-trained SVMs. Each of these SVM responses indicates
how likely the query contains a specific event. To make deci-
sion, we first use an empirical threshold to remove most can-
didates. For each candidate passing the first filtering stage, if
there is a peak maximum response centered in a temporal win-
dow, we consider that a specific type of event has occurred.
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Fig. 4. The interface of the event viewer tool.

2.5. Summary

The proposed approach for event detection is summarized as
follows.
1: Specify event E.
2: Input query video V.
3. Split V into clips {V1, Va, ..., Vk}.
4: for k =1to K do
5:  Randomly select a set of spatio-temporal points in V, .
6:  Compute LPM-based features from cuboids associated
with obtained 3D points.
Generate bag-of-features representation.
Calculate response of SVM associated with E.
9: end for
10: Generate candidates by thresholding SVM responses.
11: Filter candidates by local maximum filtering.

@ =3

3. FALSE POSITIVE REMOVAL USING EVENT
VIEWER TOOL

To further remove false positives in the results returned by the
proposed event detection approach described in the previous



section, an event viewer tool as shown in Fig.4 is developed
for visual and manual filtering. The event viewer tool is de-
signed to allow a user to quickly and accurately flag or re-
ject video clips for the occurrence of specific types of events.
After specifying the number of simultaneous players and the
event type, the user can mouse over each clip playing on a
loop and select REJECT if the specified event is not present,
or FLAG if the event occurs. Once a REJECT/FLAG deci-
sion has been made on each of currently displayed video clips,
more sets of video clips load and play on a loop until all clips
have been inspected.

Having more videos open at once may allow the user to
observe human activities in several clips at the same time,
which may be of benefit to greater efficiency. On the other
hand, as more players play videos simultaneously, the view
area for each video diminishes, which may lead to loss of de-
tails. Therefore, it makes sense to find an appropriate number
of players in terms of both viewing speed and flagging ac-
curacy. Students participated in testing the event viewer tool
with different number of players for flagging the seven types
of events defined in the TRECVID SED task.

4. EXPERIMENTAL RESULTS

The proposed event detection approach is trained on the
Gatwick dataset. As described above, LPM-based features
are used to train seven SVMs with RBF-y? kernel for the
seven specific types of events using one-versus-rest strategy
respectively. We use sliding spatio-temporal volumes to de-
tect likely events in the evaluation videos. The final results
are generated from SVM response thresholding and local
maximum filtering.

4.1. Dataset

The Gatwick dataset contains videos captured by five surveil-
lance cameras installed at the London Gatwick airport at a
resolution of 720 x 480 at 25 frames per second. Specifi-
cally, the first camera observes passengers entering and exit-
ing a door, the second and third cameras observe two wait-
ing areas, the fourth camera observes two elevator doors, and
the fifth camera observes multiple passenger channels. These
scenes involve high density crowd and contain significant oc-
clusion amongst people. There are several hours of video
taken by each camera. The videos are annotated for seven
specific types of events, such as CellToEar, Embrace, Object-
Put, PeopleMeet, PeopleSplitUp, PersonRuns, and Pointing.
The dataset is composed of two subsets for development and
evaluation. The proposed event detection approach is trained
on selected portions of the development videos. For each type
of event, the annotated video clips are used as positive sam-
ples, both the video clips annotated for other types of event
and 1500 video clips without containing any specific type of

event are used as negative samples, and a non-linear SVM is
trained on the obtained training set.

4.2. Event Detection Results

There are a few parameters in the proposed approach, and we
determine them by analyzing training videos. Specifically, we
resize the spatial resolution of training and test videos to 0.25
times of the original resolution to make the computation man-
ageable while maintain an adequate sampling density. For the
purpose of event detection in long videos, we slide a spatio-
temporal volume inside the original resolution of the video.
The volume has a temporal size of 50 frames with intervals
of 10 frames. The minimal spatial and temporal sizes of 3D
cuboid are set to 16 x 16 pixels and 10 frames respectively.
There are total 8 spatial scales and 2 temporal scales. To cap-
ture motion information in each cuboid, we set one root filter
and eight (2 x 2 x 2) partially overlapping part filters in both
spatio and temporal directions. For bag-of-features represen-
tation, we randomly selected 120,000 LPM-based features
extracted from the training set, and used k-means to cluster
these features to produce 6,000 visual words. The original
LPM-based feature has 1152 dimensions which is 9 times of
the MBH descriptor. To improve matching efficiency, we use
PCA to project LPM-based feature to a sub-space of 96 di-
mensions.

The final evaluation results of the proposed event detec-
tion approach we got from TRECVID are shown in Table I
and Fig.5. The rates of false alarms (RFA) for all the events
are high, which may result from the fact that there is no boot-
strapping stage included in model training. For the events of
Embrace, PeopleMeet, PeopleSplitUp and PersonRuns, the
percentages of missed detections (PMiss) are much smaller
than that of CellToEar, ObjectPut and Pointing while the val-
ues of RFA are close. A possible reason for such a situation
may be that the random sampling strategy used for bag-of-
features is more suitable for capturing motion information in
the case of specific human activities occupying more spatio-
temporal region in the detection window. Therefore, a possi-
ble solution would be to use a detection window with a lower
spatial resolution sliding in both spatial and temporal direc-
tions.

4.3. Test Result of Event Viewer Tool

In this experiment, we compare the results of using 1, 2, 4,
6 and 9 video players in the event viewer tool for flagging
the video clips. The seven types of events defined in the
TRECVID SED task were all tested. All of the video clips
used were cut from the Gatwick dataset. The number of play-
ers and the event type were randomly chosen for each partic-
ipant. Before the test, 5 sample videos containing the event
were shown to each participant in order to show typical man-
ifestations of the event, and then 25 randomly select videos
were shown for training. In the test phase, 200 video clips
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Fig. 5. DET curve of the proposed approach for the seven types events in the TRECVID SED task.



Table 1. Evaluation results of the proposed approach for the seven types of events in the TRECVID SED task.

Event #Targ #NTarg #Sys #CorDet #FA  #Miss RFA PMiss DCR
CellToEar 194 27041 27173 62 14135 132 927.05 0.680 5.3157
Embrace 175 27001 27173 166 15820 9 1037.57 0.051 5.2393
ObjectPut 621 26736 27173 262 17773 359 1165.65 0.578 6.4064

PeopleMeet 449 26752 27173 420 24620 29 1614.72  0.065 8.1382
PeopleSplitUp 187 26987 27173 185 18149 2 1190.32  0.011 5.9623
PersonRuns 107 27067 27173 98 17467 9 114559 0.084 5.8120
Pointing 1063 26330 27173 789 23825 274 1562.58 0.258 8.0707

average number of clips viewed

the number of players

Fig. 6. The average number of clips viewed.

(5% of these contained the specific events) were randomly
chosen, and the participant was required to flag the clips as
much as possible within 10 minutes. Figs.6 and 7 show the
average number of clips viewed and the mean percentage of
missed events (the percentage was calculated by taking the
number of events that were failed to be flagged, and dividing
by the total number of clips that were viewed and contained
an event). When 9 players were used, the average number of
viewed videos is the highest, however the corresponding miss
rate is also the highest. Given these results, we use 6 players
in the event viewer tool which allow the user to have access
to more simultaneously playing clips without losing too much
detail.

5. CONCLUSION

This paper presents an approach for detecting seven types
of events such as CellToEar, Embrace, objectPut, People-
Meet, PeopleSplitUp, PersonRun, and Pointing defined by
TRECVID SED task. To represent events, a local part model
is employed to extract features from local spatio-temporal
cuboids and random sampling strategy is used to produce
bag-of-features representation. Seven pre-trained SVMs with
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Fig. 7. the mean rate of missed events.

RBF-x? kernel are used for classification. On the other hand,
a event viewer tool is developed for further filtering the re-
sults by manually and efficiently removing false positives.
The evaluation results demonstrate that the performance of
the proposed approach in detecting Embrace, PeopleMeet,
PeopleSplitUp and PersonRuns is better than that in detecting
CellToEar, ObjectPut and Pointing. In addition, a bootstrap-
ping stage should be included in model training, which would
be of benefit to reducing false positive rate.
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