Quaero at TRECVID 2013
Semantic Indexing Task

Bahjat Safadi, Nadia Derbas, Abdelkader Hamadi, Philippe Mulhem and Georges Quénot
UJF-LIG

20 November 2013
Outline

• Main task: almost nothing new
 – Use of semantic features: +8% relative gain
 – Result used for the pair and localization tasks

• Pair task:
 – Can we beat the baseline?

• Localization task:
 – Can we do it without local annotations?
The Quaero classification pipeline

- Descriptor extraction
- Descriptor transformation
- Classification
- Descriptors and classifier variants fusion
- Higher level hierarchical fusion
- Re-ranking (re-scoring)

Conceptual feedback

Text, Audio, Image → Classification score
Main task

• As in 2011 and 2012 (see TV11 slides)
 - Six-stage pipeline including temporal re-ranking (actually re-scoring) and conceptual feedback
 - Use of a large number of descriptors shared by the IRIM group from GDR ISIS

• New descriptor:
 - Vectors of 1K and 10K concepts scores trained on ILSVRC10 and ImageNet and applied to key frames, kindly produced by Florent Perronnin from Xerox (XRCE)
 - Excellent individual descriptor (infAP of 0.2291, late fusion of both 1K and 10K versions)
 - Complementary to other descriptors: relative gain of 8% before conceptual feedback and temporal re-ranking (from 0.2387 to 0.2576; 0.2848 after feedback and re-scoring).
Category A results (Main runs)

Median = 0.128

0.2835 All with one iteration of feedback
0.2848 All with two iteration of feedback
0.2846 All with two iteration of feedback + uploader weak (bug)
0.2827 All with two iteration of feedback + uploader strong (bug)

Differences not statistically significant
Concept pairs: can we beat the baseline?

• Which baseline?
 • Single concept scores approximately calibrated as probabilities (e.g. Platt’s method)
 • Sum or product (arithmetic of geometric mean) or minimum of the single concept scores
 • Best (worst) individual classifier performance
 • Most (least) frequent single concept

• What alternatives?
 • Direct learning: very imbalanced, extremely few positive samples, but possible for most pairs
 • Other and possibly more complex methods for single concept score fusion
Category A results (Concept Pairs)

Median = 0.1125

Quaero official submissions on concept pair:

• Not using the final version of single concept scores (late)
• Two-step ranking: ranking the top list of one concept with the ranking of the other + symmetrization, not so goof idea
• Direct learning incomplete relative to the concept learning
• Not bad but not significant results
“Baselines” from best Quaero submission (NOT official submissions)

• Use of one of the two scores:
 - Most frequent (dev): 0.1096
 - Least frequent (dev): 0.1130
 - Higher infAP (CV): 0.1222
 - Lower infAP (CV): 0.1004

• Use of both scores:
 - Sum (arithmetic mean): 0.1613
 - infAP weighted sum (CV): 0.1613
 - infAP weighted sum with power (CV): 0.1637
 - Product (geometric mean): 0.1761 (makes sense)

• Best official submission (UvA): 0.1616
Alternatives (non official values)

- Rank fusion: arithmetic mean of shot ranks
- Boolean fusion (extended Boolean approach [9]):
 \[p(i, c1, c2) = 1 - \sqrt{((1 - p(i, c1))^2 + (1 - p(i, c2))^2)/2} \]
- Direct learning: handle imbalance with MSVM

<table>
<thead>
<tr>
<th>System/run</th>
<th>MAP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Best submission TRECVID 2013</td>
<td>0.1616</td>
</tr>
<tr>
<td>linFus</td>
<td>0.1613</td>
</tr>
<tr>
<td>prodFus</td>
<td>0.1761</td>
</tr>
<tr>
<td>rankFus</td>
<td>0.1767</td>
</tr>
<tr>
<td>boolFus</td>
<td>0.1724</td>
</tr>
<tr>
<td>learnDouble</td>
<td>0.1514</td>
</tr>
</tbody>
</table>
By concept pair results

- Rank fusion is the best, very close to product fusion
- **But:** most of the MAP is supported by only two concepts
- Almost no difference is statistically significant 😞
Localization task:
Can we do it without local annotations?

Motivation:

• Annotations are costly and boring
• Local annotations are even more
• We had no time and support to do any
Localization task proposed approach

Inspired from (Ries and R. Lienhart, 2012):

- Compute local descriptors (opponent SIFT from UvA tool)
- Cluster local descriptors (k-means)
- Learn discriminative models for clusters based on relative occurrence frequencies using global image annotations only
- Filter points in an image predicted as globally positive
- Select a rectangle according to the density of points using horizontal and vertical projections
- Main problem:
 - no training data for parameter tuning (e.g. threshold selection);

Localization task proposed approach
Filtering SIFT points

- Relative Occurrence Frequency (ROF):
 \[
 \text{ROF}_p(y) = \frac{p_y}{p} \quad \text{and} \quad \text{ROF}_n(y) = \frac{n_y}{n}
 \]
 with:
 \[
 p_y \quad (\text{resp. } n_y) = \text{number of positive (resp. negative) images in which at least one point belonging to the cluster } y \text{ is present in the image and:}
 \]
 \[
 p \quad (\text{resp. } n) = \text{total number of positive and negative images}
 \]

- Filter a point associated to a cluster \(y \) according to \(\text{ROF}_p(y)/\text{ROF}_n(y) \) or simply to \(\text{ROF}_p(y) \) (better)
Finding Rectangles

- Compute horizontal and vertical histograms of filtered points (32 bins for each projection)
- Remove bins from left and right (resp. top and bottom) as long as the bin value is below a given threshold β
- Keep the rectangle covering the remaining bins
- β is manually tuned separately for each concept by looking at the top 500 results within the development set (human intervention but not exactly annotation)
- Limitation: approach suited for finding a single rectangle
Sample results (1)
Sample results (2)
Only one submitted run

• Quite good in temporal detection but mostly comes from the concept detector developed for the main task
• Less good for the spatial localization but not so bad
• The recall versus precision compromise was not optimized
• No region annotation was used
• Many possible improvement
• TV13 assessment will allow a better tuning for next issues or other applications
Thanks