TRECVID 2013 INSTANCE RETRIEVAL

AN INTRODUCTION

Wessel Kraaij TNO, Radboud University Nijmegen

Paul Over NIST

Task

Example use case: browsing a video archive, you find a video of a person, place, or thing of interest to you, known or unknown, and want to find more video containing the same target, but not necessarily in the same context.

System task:

- Given a topic with:
 - example segmented images of the target (4)
 - a target type (OBJECT/LOGO, PERSON)
 - < <topic title>
- Return a list of up to 1000 shots ranked by likelihood that they contain the topic target
- Automatic or interactive runs are accepted

Differences between INS and SIN

INS	SIN
Very few (4) training images (probably from the same clip)	Many (>> 100) training images from several clips
Many use cases require real time response	Concept detection can be performed off-line
Targets include unique entities (persons/locations/objects) or industrially made products	Concepts include events, people, objects, locations, scenes. Usually there is some abstraction (car)
Use cases: forensic search in surveillance/ seized video, video linking	Automatic indexing to support search.

INS CHALLENGE: Find objects, persons in video given a few visual examples in a few seconds

New data ...

The BBC and the AXES project made **464 hours** of the BBC soap opera EastEnders available for research in **MPEG-4**

- 244 weekly "omnibus" files from 5 years of broadcasts
- 471527 shots
- Average shot length: 3.5 seconds
- Transcripts from BBC
- Per-file metadata

Represents a "small world" with a slowly changing set of:

- People (several dozen)
- Locales: homes, workplaces, pubs, cafes, open-air market, clubs
- Objects: clothes, cars, household goods, personal possessions, pets, etc
- Views: various camera positions, times of year, times of day,

NUTSE of fan community metadata allowed, if documented

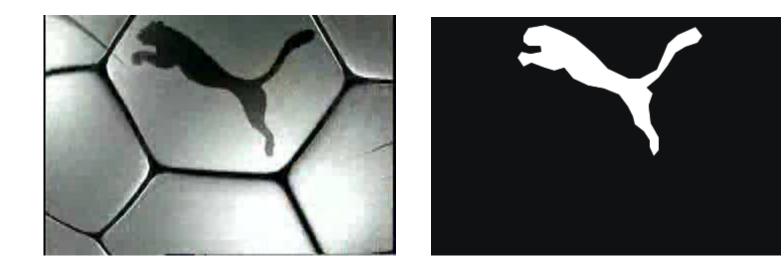
EastEnders' world

National Institute of Standards and Technology

Topic creation procedure @ NIST

- Viewed every tenth video
- Created ~90 topics targeting recurring specific objects or persons
 - Emphasized objects over people
 - People: mixture of unnamed extras, named characters
 - Objects: most clearly bounded, various sizes, most rigid, some mobile (varying contexts)
 - All: various camera angles/distances, some variation in lighting
- Chose representative sample of 30 topics, then example images from test videos, many from the sample video (ID 0)
- Filtered example shots from the submissions

National Institute of Standards and Technology


Topics: selection criteria

Tried to include targets with various degrees/sources of variability:

- Inherent characteristics: boundedness, size, rigidity, planar/non-planar, mobility,...
- Locale: multiplicity, variability, complexity,...
- Camera view: distance, angle, lighting,...

Topics – segmented example images

Source

Mask

Example from TV12

Topics – 26 Objects

True positives: **Topic: 69** 2300

a 'no smoking' logo

72 261

70

741

674

a small red obelisk

73

71

an Audi logo

74

100

31

a cigarette

a metropolitan police logo this ceramic cat face

Topics – 26 Objects (cont.)

76

a SKOE can **78 880**

Queen Victoria bust

831

this CD stand

this dog

80

77

31

this phone booth

Topics – 26 Objects (cont.)

a black taxi

455

David fridge magnet

82

a BMW logo

86

these scales

83

87

61

759

chrome/glass cafetiere

25

a VW logo

118

Topics – 26 Objects (cont.)

this pendant

These turnstiles

this wooden bench

a menu with stripes

a tomato ketchup dispenser a public trash can

Topics -26 Objects (cont.)

98

these checkerboard spheres

a P (parking automat) sign

386

84

Topics – 4 Persons 1605 88

32

this man 96

161

Nation Austituted Sad Irds and Technology

Tamwar

this man

INS 2013: 22 Finishers (tv12:24)

CEALIST	CEA LIST, Vision & Content Engineering Laboratory
IRIM	CEA-LIST, ETIS, EURECOM, INRIA-TEXMEX, LABRI, LIF, LIG, LIMSI-TLP, LIP6, LIRIS, LISTIC, CNAM
VIREO	City University of Hong Kong
AXES	Access to Media
iAD_DCU	Dublin City University University of Tromso
ITI_CERTH	Information Technologies Institute, Centre for Research and Technology Hellas
ARTEMIS	Institut Mines-Telecom; Telecom SudParis; ARTEMIS Department
JRS	JOANNEUM RESEARCH Forschungsgesellschaft mbH
BUPT_MCPRL	Multimedia Communication and Pattern Recognition Labs
MIC_TJ	Multimedia and Intelligent Computing Lab, Tongji University
NII	National Institute of Informatics
NTT_NII	NTT, NII
ORAND	ORAND S.A. Chile
FTRDBJ	Orange Labs International Centers China
IMP	Osaka Prefecture University
PKU-ICST	Peking UICST
TNO_M3	TNO
TokyoTechCanon	Tokyo Institute of Technology Canon Inc.
thu.ridl	Tsinghua University School of Software, Department of Computer Science and Technology
sheffield	U. of Sheffield, UK Harbin Engineering Univ, PRC U. of Engineering & Technology (Lahore
MediaMill	University of Amsterdam
NERCMS	Wuhan University

RED indicates team submitted interactive runs

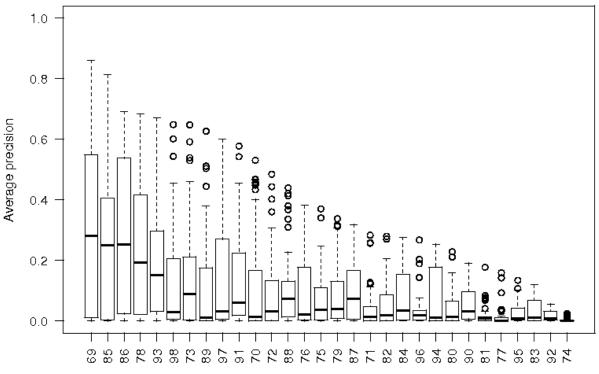
NIST National Institute of Standards and Technology

Evaluation

For each topic, the submissions were pooled and judged down to at least rank 120 (on average to rank 253, max 460), resulting in 209,302 judged shots (~ 600 person-hrs).

10 NIST assessors played the clips and determined if they contained the topic target or not.

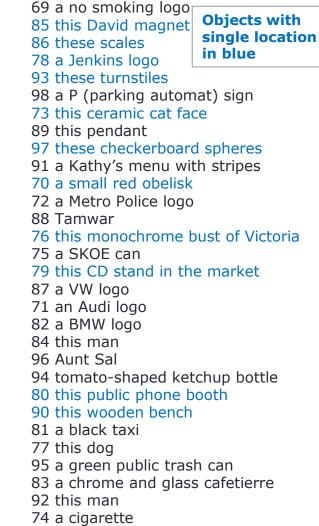
13907 clips (avg. 463.6 / topic) contained the topic target (6.6%)


True positives per topic: min 25 med 256.5 max 2300

trec_eval_video was used to calculate average precision, recall, precision, etc.

New INS run notebook pages are available in the National Interactive participants area.

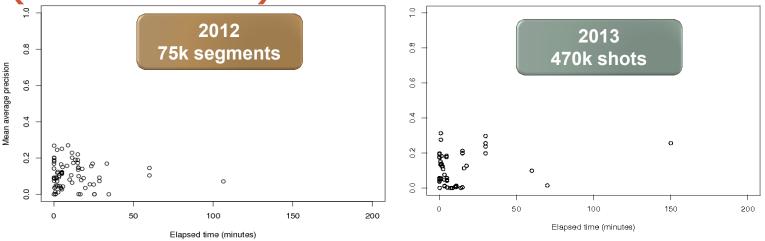
Evaluation – results by topic - automatic


Boxplot of 65 TRECVID 2013 automatic instance search runs

Topic number

NIST National Institute of Standards and Technology

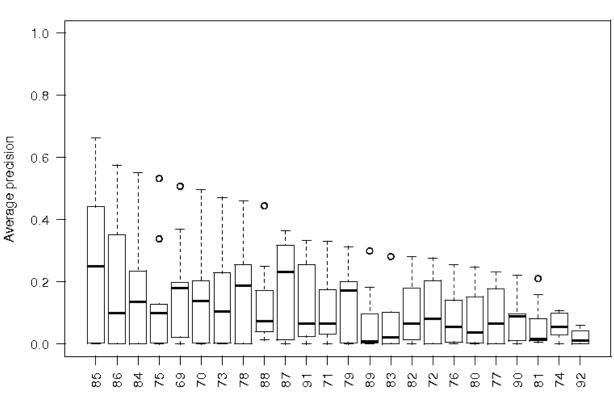
Name [clips with target]


Evaluation – top 10, based on MAP

Automatic	MAP	Randomization test		
NII-AsymDis_Cai-Zhi_2 NTT_NII_3 NII-AvgDist_Cai-Zhi_3 NII-GeoRerank_Cai-Zhi_1 NTT_NII_2 NTT_NII_1 PKU-ICST-MIPL_1 PKU-ICST-MIPL_3 PKU-ICST-MIPL_4	0.297 0.276 0.256 0.256 0.237 0.212 0.200 0.198	NII-AsymDis_Cai-Zhi_2	<pre>> NII-AvgDist_Cai-Zhi_3</pre>	
NTT_NII_4	0.198	NTT_NII_3 NTT_NII_2	<pre>> NTT_NII_1 > NTT_NII_2 > NTT_NII_4 > PKU-ICST-MIPL_1 > PKU-ICST-MIPL_4 > PKU-ICST-MIPL_3</pre>	

> PKU-ICST-MIPL 4

">" denotes statistically significant differences


MAP vs. query processing time (automatic)

- Ranges from 6 sec (0.1min) to 23 days/ topic
- Runs with <=1min processing speed & map=> 0.2:
- NII
 - 1M vwords, late fusion of 6 features, query adaptive similarity, aggregated feature vector for each clip, inverted file for speed up
 - F_NO_NII-AsymDis_Cai-Zhi_2 (map=0.31;1min) asymmetric similarity,
 - F_NO_NII-AvgDist_Cai-Zhi_3 (map=0.28;1min)
- Vireo

F_NO_vireo_dtc_1 (map=0.2; 0.1min) SIFT BOVW (250K), background context weighting strategy (stare), (quite similar to 2012 run)

Evaluation – results by topic - interactive

Boxplot of 9 TRECVID 2013 interactive instance search runs

Topic number

Name [clips with target]

7	85 this David magnet 86 these scales 84 this man 75 a SKOE can	Objects with single location in blue						
	69 a no smoking logo							
	70 a small red obelisk 73 this ceramic cat fac							
	78 a Jenkins logo							
	88 Tamwar							
	87 a VW logo							
	91 a Kathy's menu with stripes							
	71 an Audi logo							
	79 this CD stand in the market 89 this pendant							
	83 a chrome and glass	s cafetierre						
	82 a BMW logo							
	72 a Metro Police logo							
	76 this monochrome b							
	80 this public phone b	ooth						
	77 this dog 90 this wooden bench							
	81 a black taxi							
-	74 a cigarette							
	92 this man							

NIST National Institute of Standards and Technology

Evaluation – all, based on MAP

Interactive	MAP	Rando	omi	zation test
FTRDBJ_4	0.296	FTRDBJ_4 >	ora	and-interactive_2
PKU-ICST-MIPL 2	0.245		>	AXES_1_1
orand-interactive 2	0.215			> AXES_2_2
AXES 1 1	0.135			> AXES_3_3
AXES 3 3	0.086			> ITI_CERTH_1
AXES 2 2	0.079			> ITI_CERTH_2
ITI CERTH 2	0.009			> ITI_CERTH_3
ITI_CERTH_1	0.006	PKU-ICST-MIPL_2 >	AXE	S_1_1
ITI_CERTH_3	0.005		>	AXES_2_2
			>	AXES_3_3
				> ITI_CERTH_1
				> ITI_CERTH_2
				> ITI_CERTH_3

">" denotes statistically significant differences

Possible factors for query difficulty

- Easy topics
 - Simple visual context
 - Stationary target
 - Planar, rigid objects

- Difficult topics
 - Small target (ROI)
 - Moving target: differences in camera angle, location
 - Non planar, non rigid

Overview of submissions

- 17 out of 22 INS teams described INS runs for notebook
- All systems use some form of SIFT local descriptors
 - Large variety of experiments adressing representation, fusion or efficiency challenges
- •Talks:
 - NII National Insititute of Informatics ,Japan
 - Vireo City University of Hong Kong
 - NTT-NII Nippon Telegraph and Telephone Corp., NII

National Institute of Standards and Technology

Typical INS template system

- Processing clips
 - Keyframe choice (1 per shot – 5fps)
 - Keyframe downsizing?
- Representation
 - Global (HSV, LBP,..)
 - Local
 - Detection methods (1-5)
 - Choice of descriptors (1-2)

Each design choice has an impact on speed and effectiveness

Matching

- #1: Object recognition based on nr of keypoint matches (Lowe), spatial verification
- #2: BovW: clustering kp to codebook (size,hard/soft), choice of similarity function(idf weighting, ROI / background), spatial verification
- Fusion of scores

Finding an optimal representation

- Combining different feature types (local/global)
 - CEA: BOVW, HSV hist
 - Sheffield/Harbin: LBP, HOG, SIFT
 - **BUPT:** BoVW, BoVW+local
- VLAD quantization instead of BoVW: **AXES, ITI-CERTH** (VLAD>BovW)
- Combining multiple keypoint detectors and multiple descriptors
 - NII: Hesssian affine, Harris-Laplace, MSER // RootSIFt + C-Sift

Special treatment of faces

- **AXES:** find additional faces with Google image search to extend training data
- Orange labs Beijing: BovW + face classifier based on "simile classifier based face descriptor": did help some topics, but slow

System architecture & Efficiency

- Object search, sequential video processing on the fly
 - **TNO**: Hadoop setup to speed up linear search
 - JRS: GPU based object search
 - **MIC_TJ**: Hybrid parallelization using GPU's and map/reduce
- Bag of visual words, indexed video database
 - Most systems: e.g. NII, NTT-NII, Vireo
 - sparse BovW, Lucene inverted file based scoring

Reusing techniques from text IR

- Inverted files for fast lookup in sparse BovW space (Lucene)
- NII: asymmetric similarity function
- Use of Collection statistics:
 - BM25 enhancements for weighting (NTT-NII): did help
 - Mining frequent cooccurring objects (VIREO)
- Pseudo relevance feedback, query expansion
 - PKU-ICST: to eliminate noisy hits
- NTT-NII: no gains

National Institute IAD DCU: helped to remove some false positives

Interactive experiments

- Orange labs Beijing (1 interactive run)
 - Interactive run significantly outperforms automatic runs (0.29 vs 0.19) "due to multiple feedback rounds"
- PKU ICST (Peking Univ.) (1 interactive run)
 - 2000 visual words (SIFT), retrieve 1000 clips using multibag SVM, annotate 50 clips, retrain SVM, rerank
 - Interactive run outperforms best automatic PKU run
- AXES (4 runs)
 - Fusion of subsystems: (metadata) closed captions, Google image based visual model, face recognition, object/location retrieval (all query-time)
 - Experiment focuses on different user types (post-docs, vs phd students)
- CERTH (3 runs)
 - VLAD quantization outperforms BovW
- User interface benefits from scene segmentation module (linking related shots)

Some observations

- The task seems healthy after 3 pilot years
 - Stable number of participants
 - Interesting new dataset
 - Systems produce meaningful results
 - No ceiling reached yet
- Increased interest in interactive search
- INS might be a good track to re-introduce a subtask on localization, temporal and/or spatial

Some Questions

- How do participants judge the Eastenders dataset?
- Are the topics challenging enough?
- Factors affecting difficulty/success?
- Fan-site metadata:
 - Used?
 - How?
 - Successfully?

Recommendations for the final paper

• Re-run a TV12 or TV11 system on TV 13 data to help monitoring progress over the years.

• Perform a per topic or per topic class error analysis to get a better understanding about the pros and cons of certain techniques for particular target characteristics. *Why did it work or fail?*

INS 2014 plans

Continue with same test data and new set of topics

